Powered by OpenAIRE graph

Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17

Authors: A H, Carey; D, Waterworth; K, Patel; D, White; J, Little; P, Novelli; S, Franks; +1 Authors

Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17

Abstract

Fourteen Caucasian families with 81 affected individuals have been assessed in which polycystic ovaries/male pattern baldness (PCO/MPB) segregates as an autosomal dominant phenotype (1). The gene CYP17, coding for P450c17 alpha (17 alpha-hydroxylase; 17/20 lyase) on chromosome 10q24.3 is the rate-limiting step in androgen biosynthesis. We have identified a new single base change in the 5' promoter region of CYP17 by heteroduplex analysis. This creates an additional SP1-type (CCACC box) promoter site, which may cause increased expression. This base change also creates a recognition site for the restriction enzyme MspA1 allowing a simple screening procedure. There is a significant association between the presence of this base change (A2) and the affected state for consecutively identified Caucasian women with PCO as compared either to consecutively matched controls (P = 0.03) with an odds ratio for those with at least one A2 allele of 3.57, or to a random population (P = 0.02) with an odds ratio of 2.50. Within the fourteen families, members with PCO or MPB have a significant association with the occurrence of at least one A2 allele compared to their normal relatives, with an odds ratio of 2.20 (P = 0.05). The base change does not cosegregate with the affected phenotype within the families showing association, demonstrating that this mutation of CYP17 does not cause PCO/MPB. Variation in the A2 allele of the CYP17 gene is a significant factor modifying the expression of PCO/MPB in families where it has been demonstrated to segregate as a single gene disorder, but it is excluded as the primary genetic defect.

Related Organizations
Keywords

Male, Recombination, Genetic, Base Sequence, Chromosomes, Human, Pair 10, Molecular Sequence Data, Chromosome Mapping, Steroid 17-alpha-Hydroxylase, Alopecia, Polymerase Chain Reaction, Pedigree, Random Allocation, Humans, Point Mutation, Female, Lod Score, Promoter Regions, Genetic, Alleles, Polymorphism, Restriction Fragment Length, DNA Primers, Polycystic Ovary Syndrome

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    437
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
437
Top 1%
Top 1%
Top 1%