Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes

Authors: Hasmik Yepiskoposyan; Anand Selvaraj; Walter Schaffner; Kuppusamy Balamurugan; Hao Zhou; Dieter Egli; Oleg Georgiev; +1 Authors

Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes

Abstract

From insects to mammals, metallothionein genes are induced in response to heavy metal load by the transcription factor MTF-1, which binds to short DNA sequence motifs, termed metal response elements (MREs). Here we describe a novel and seemingly paradoxical role for MTF-1 in Drosophila in that it also mediates transcriptional activation of Ctr1B, a copper importer, upon copper depletion. Activation depends on the same type of MRE motifs in the upstream region of the Ctr1B gene as are normally required for metal induction. Thus, a single transcription factor, MTF-1, plays a direct role in both copper detoxification and acquisition by inducing the expression of metallothioneins and of a copper importer, respectively.

Keywords

Ion Transport, Green Fluorescent Proteins, Computational Biology, Biological Transport, Electrophoretic Mobility Shift Assay, Transfection, Transcription Factor MTF-1, DNA-Binding Proteins, Gene Components, Gene Expression Regulation, Animals, Drosophila, Metallothionein, Cation Transport Proteins, Cells, Cultured, Copper, Copper Transporter 1, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal