Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1987 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells.

Authors: Lee Bardwell; Ruth Sager; Anthony Anisowicz;

Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells.

Abstract

Comparison by subtractive hybridization of mRNAs revealed a moderately abundant message in highly tumorigenic CHEF/16 cells present at very low levels in closely related nontumorigenic CHEF/18 cells. After cloning and sequencing the corresponding cDNA, computer comparison showed closest homology with the human connective tissue-activating peptide III (CTAP III). The human tumor cell cDNA hybridizing with the Chinese hamster clone was isolated, sequenced, and found to have closer similarity to the Chinese hamster gene than to CTAP III. Thus, the cloned cDNAs from Chinese hamster and human cells represent a different gene, named gro. Studies of its transcriptional regulation have shown that expression is tightly regulated by growth status in normal Chinese hamster and human cells and relaxed in the tumorigenic cells so far examined.

Keywords

Base Sequence, Chemokine CXCL1, Molecular Sequence Data, Nucleic Acid Hybridization, DNA, DNA, Neoplasm, Fibroblasts, Cell Transformation, Neoplastic, Cricetulus, Gene Expression Regulation, Cricetinae, Multigene Family, Animals, Humans, Intercellular Signaling Peptides and Proteins, Amino Acid Sequence, Peptides, Poly A, Chemokines, CXC, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    336
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
336
Top 10%
Top 0.1%
Top 1%
bronze