Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Bioch...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Biochemistry
Article
License: CC BY
Data sources: UnpayWall
The Journal of Biochemistry
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Interaction of the phospholipid flippase Drs2p with the F-box protein Rcy1p plays an important role in early endosome to trans-Golgi network vesicle transport in yeast

Authors: Hisatoshi, Hanamatsu; Konomi, Fujimura-Kamada; Takaharu, Yamamoto; Nobumichi, Furuta; Kazuma, Tanaka;

Interaction of the phospholipid flippase Drs2p with the F-box protein Rcy1p plays an important role in early endosome to trans-Golgi network vesicle transport in yeast

Abstract

Phospholipid composition of biological membranes differs between the cytoplasmic and exoplasmic leaflets. The type 4 P-type ATPases are phospholipid flippases that generate such membrane phospholipid asymmetry. Drs2p, a flippase in budding yeast, is involved in the endocytic recycling pathway. Drs2p is implicated in clathrin-coated vesicle formation, but the underlying mechanisms are not clearly understood. Here we show that the carboxyl-terminal cytoplasmic region of Drs2p directly binds to Rcy1p, an F-box protein that is also required for endocytic recycling. The Drs2p-binding region was mapped to the amino acids 574-778 region of Rcy1p and a mutant Rcy1p lacking this region was defective in endocytic recycling of a v-SNARE Snc1p. We isolated Drs2p point mutants that reduced the interaction with Rcy1p. The mutation sites were clustered within a small region (a.a. 1260-1268) of Drs2p. Although these point mutants did not exhibit clear phenotypes, combination of them resulted in cold-sensitive growth, defects in endocytic recycling of Snc1p and defective localization of Rcy1p to endosomal membranes like the drs2 null mutant. These results suggest that the interaction of Drs2p with Rcy1p plays an important role for Drs2p function in the endocytic recycling pathway.

Keywords

Cytoplasm, Saccharomyces cerevisiae Proteins, Base Sequence, F-Box Proteins, Blotting, Western, Molecular Sequence Data, Vesicular Transport Proteins, Golgi Apparatus, Calcium-Transporting ATPases, Endosomes, Saccharomyces cerevisiae, Mutagenesis, Site-Directed, Amino Acid Sequence, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%
hybrid