Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2006 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2006
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Slit Proteins Regulate Distinct Aspects of Retinal Ganglion Cell Axon Guidance within Dorsal and Ventral Retina

Authors: Thompson, Hannah; Camand, O; Barker, D; Erskine, L;

Slit Proteins Regulate Distinct Aspects of Retinal Ganglion Cell Axon Guidance within Dorsal and Ventral Retina

Abstract

An early step in the formation of the optic pathway is the directed extension of retinal ganglion cell (RGC) axons into the optic fiber layer (OFL) of the retina in which they project toward the optic disc. Using analysis of knock-out mice andin vitroassays, we found that, in the mammalian retina, Slit1 and Slit2, known chemorepellents for RGC axons, regulate distinct aspects of intraretinal pathfinding in different regions of the retina. In ventral and, to a much lesser extent, dorsal retina, Slits help restrict RGC axons to the OFL. Additionally, within dorsal retina exclusively, Slit2 also regulates the initial polarity of outgrowth from recently differentiated RGCs located in the retinal periphery. This regional specificity occurs despite the fact that Slits are expressed throughout the retina, and both dorsal and ventral RGCs are responsive to Slits. The gross morphology and layering of the retina of theslit-deficient retinas is normal, demonstrating that these distinct guidance defects are not the result of changes in the organization of the tissue. Although displaced or disorganized, the aberrant axons within both dorsal and ventral retina exit the eye. We also have found that the lens, which because of its peripheral location within the developing eye is ideally located to influence the initial direction of RGC axon outgrowth, secretes Slit2, suggesting this is the source of Slit regulating OFL development. These data demonstrate clearly that multiple mechanisms exist in the retina for axon guidance of which Slits are an important component.

Keywords

Mice, Knockout, Retinal Ganglion Cells, retina, 570, Cultured Gene Expression Regulation, 610, Gene Expression Regulation, Developmental, Nerve Tissue Proteins, slit, Adaptation, Physiological, Axons, Retina, Knockout Nerve Tissue Proteins/*metabolism Retina/*embryology/metabo, Mice, Physiological/physiology Animals Axons/*physiology/*ultrastructure Body Patterning/*physiology Cells, RGCs, visual system, Animals, Visual Pathways, Adaptation, Developmental/physiology Mice Mice, Cells, Cultured, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
Green
hybrid