Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Iranian Journal of B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mEDRA
Article . 2020
Data sources: mEDRA
versions View all 6 versions

Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9.

Authors: Ebrahimi, saeedeh; Makvandi, Manochehr; Abbasi, Samaneh; Azadmanesh, keyhan; Teimoori, Ali;

Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9.

Abstract

Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.In this study, we aimed to evaluate the capability of CRISPR-Cas9 to manipulate the UL39 gene to create oncolytic HSV-1. Herein, three sgRNAs were designed against the UL39 gene and transfected into HEK-293 cell line followed by infection with HSV-1 KOS.After three rounds of plaque purification, several HSV-1 mutants were identified by PCR analysis and sequencing. One of these mutations in which 55 nucleotides were deleted resulted in a frameshift mutation that in turn produced a truncated protein with only 167 amino acids from 1137 amino acids. Functional analysis in Vero and primary fibroblast cells revealed that viral replication was significantly lower and plaque size was smaller in the HSV-1 mutant compared with HSV-1 KOS. Moreover, the relative amount of viral genome present in the supernatants of infected cells (Vero and primary fibroblast cells) with HSV-1 mutant was significantly decreased compared with those of HSV-1 KOS.Our data revealed that targeting UL39 with CRISPR-Cas9 could develop oncolytic HSV-1.

Related Organizations
Keywords

crispr-cas9, R, Medicine, herpes simplex virus type 1, Original Article, ribonucleotide reductase, ul39, oncolytic virus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research