Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2011
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2010
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Distinct Epigenetic Domains Separated by a CTCF Bound Insulator between the Tandem Genes, BLU and RASSF1A

Authors: Huey Juin Ni; Chi Hui Hsiung; Jer Wei Chang; Tim H M Huang; Han Shui Hsu; Ching Ting Chuang; Yi Ching Wang;

Distinct Epigenetic Domains Separated by a CTCF Bound Insulator between the Tandem Genes, BLU and RASSF1A

Abstract

Tumor suppressor gene (TSG) RASSF1A and candidate TSG BLU are two tandem head-to-tail genes located at 3p21.3. We hypothesized that there may be a concordance on their gene expression and promoter methylation status. If not, then there may be an insulator located between RASSF1A and BLU genes that provides a barrier activity.We first identified potential transcriptionally important CpG sites using the methylation-specific oligonucleotide array in relation to mRNA expression of RASSF1A and BLU genes in primary lung tumors. We demonstrated that E2F1 bound to the potential transcriptionally important CpG sites in RASSF1A gene of a normal lung cell line expressing RASSF1A transcripts, whereas loss of E2F1 binding to RASSF1A in A549 cancer cell line was the result of DNA methylation. Both RASSF1A and BLU genes had their own potential transcriptionally important CpG regions. However, there was no correlation of methylation status between RASSF1A and BLU. Using gel shift assay and chromatin immunoprecipitation-PCR (ChIP-PCR), we found that CCCTC-binding factor (CTCF) bound to insulator sequences located between these two genes. Bisulfite sequencing and ChIP-PCR revealed distinct methylation and chromatin boundaries separated by the CTCF binding domains in normal cells, whereas such distinct epigenetic domains were not observed in cancer cells. Note that demethylation reagent and histone deacetylase inhibitor treatments led to CTCF binding and recovery of barrier effect for RASSF1A and BLU genes in cancer cells.Our study dissects the potential transcriptionally important CpG sites for RASSF1A and BLU genes at the sequence level and demonstrates that CTCF binding to the insulator of BLU gene provides a barrier activity within separate epigenetic domains of the juxtaposed BLU and RASSF1A loci in the 3p21.3 gene cluster region.

Keywords

CCCTC-Binding Factor, Lung Neoplasms, Science, Tumor Suppressor Proteins, Q, R, DNA Methylation, Epigenesis, Genetic, Gene Expression Regulation, Neoplastic, Repressor Proteins, Cytoskeletal Proteins, Cell Line, Tumor, Medicine, Humans, CpG Islands, Insulator Elements, Chromosomes, Human, Pair 3, E2F1 Transcription Factor, Research Article, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
Green
gold
Related to Research communities
Cancer Research