Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurochemistry Inter...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurochemistry International
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Intracerebroventricular administration of quinolinic acid induces a selective decrease of inositol(1,4,5)-trisphosphate receptor in rat brain

Authors: L S, Haug; A C, Ostvold; I, Torgner; B, Roberg; L, Dvoráková; F, St'astný; S I, Walaas;

Intracerebroventricular administration of quinolinic acid induces a selective decrease of inositol(1,4,5)-trisphosphate receptor in rat brain

Abstract

[3H]inositol(1,4,5)-trisphosphate (IP3) binding studies have shown decreased [3H]IP3 binding to brain tissue in several neurodegenerative diseases, including Alzheimer's and Huntington's diseases. In addition, previous results obtained from brains of Alzheimer patients indicated a reduction of IP3-receptor protein correlated to neuronal loss. The neurotoxic effect of the glutamate receptor agonist quinolinic acid (QUIN) was therefore examined with respect to the level of IP3-receptor immunoreactivity in rat brain. Neuronal lesions were estimated with antibodies to marker proteins for striatal medium-sized spiny neurons (dopamine- and cyclic AMP-regulated phosphoprotein, Mr 32,000; DARPP-32), synaptic vesicles (synaptophysin), mitochondria (phosphate-activated glutaminase; PAG) and glial cells (glial fibrillary acidic protein; GFAP). Injection of QUIN into rat neostriatum induced a massive loss of striatal medium-sized spiny neurons, and led to a comparable loss of IP3-receptor and PAG immunoreactivity, suggesting a neuronal localisation of both these proteins. In an effort to induce less pronounced excitotoxic damage, intracerebroventricular infusion of QUIN was performed. Following this lesion, the neostriatum showed a negligible loss of DARPP-32 immunoreactivity (-11+/-5%), but contained only 43+/-3% of IP3-receptor immunoreactivity levels compared to controls. In the hippocampus, cerebellum and entorhinal cortex, the IP3-receptor loss was less pronounced. The decrease in the level of IP3-receptor immunoreactivity appears to be selective with respect to the other proteins studied, and the IP3-receptor thus shows extreme sensitivity to QUIN neurotoxicity in the neostriatum.

Keywords

Male, Neurons, Dopamine and cAMP-Regulated Phosphoprotein 32, Synaptophysin, Brain, Receptors, Cytoplasmic and Nuclear, Nerve Tissue Proteins, Inositol 1,4,5-Trisphosphate, Quinolinic Acid, Phosphoproteins, Corpus Striatum, Rats, Glutaminase, Glial Fibrillary Acidic Protein, Animals, Inositol 1,4,5-Trisphosphate Receptors, Calcium Channels, Rats, Wistar, Biomarkers, Injections, Intraventricular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%