Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neurochem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurochemistry
Article . 2000 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Binding of the GABAA Receptor‐Associated Protein (GABARAP) to Microtubules and Microfilaments Suggests Involvement of the Cytoskeleton in GABARAPGABAA Receptor Interaction

Authors: H, Wang; R W, Olsen;

Binding of the GABAA Receptor‐Associated Protein (GABARAP) to Microtubules and Microfilaments Suggests Involvement of the Cytoskeleton in GABARAPGABAA Receptor Interaction

Abstract

GABAA receptor‐associated protein (GABARAP) was isolated on the basis of its interaction with the γ2 subunit of GABAA receptors. It has sequence similarity to light chain 3 (LC3) of microtubule‐associated proteins 1A and 1B. This suggests that GABARAP may link GABAA receptors to the cytoskeleton. GABARAP associates with tubulin in vitro. However, little is known about the mechanism for the interaction, and it is not clear whether the interaction occurs in vivo. Here, we report that GABARAP interacts directly with both tubulin and microtubules in a salt‐sensitive manner, indicating the association is mediated by ionic interactions. GABARAP coimmunoprecipitates with tubulin and associates with both microtubules and microfilaments in intact cells. The cellular distribution is altered by treatment with taxol, nocodazole, and cytochalasin D. The tubulin binding domain was located at the N terminus of GABARAP by using synthetic peptides and deletion constructs and is marked by a specific arrangement of basic amino acids. The interaction between GABARAP and actin might be mediated by other proteins. These results demonstrate the GABARAP interacts with the cytoskeleton both in vitro and in cells and suggest a role of GABARAP in the interaction between GABAA receptors and the cytoskeleton. Such interactions are presumably needed for receptor trafficking, anchoring, and/or synaptic clustering. The structural arrangement of the basic amino acids present in the tubulin binding domain of GABARAP may aid in recognition of the potential of tubulin binding activity in other known proteins.

Related Organizations
Keywords

Binding Sites, Brain, CHO Cells, Receptors, GABA-A, Transfection, Microtubules, Recombinant Proteins, Rats, Actin Cytoskeleton, Kinetics, Mice, Tubulin, Cricetinae, Animals, Cloning, Molecular, Apoptosis Regulatory Proteins, Microtubule-Associated Proteins, Cytoskeleton, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    153
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
153
Top 10%
Top 1%
Top 1%
bronze