Spatial distribution of phagolysosomes is independent of the regulation of lysosome position by Rab34
pmid: 23871933
Spatial distribution of phagolysosomes is independent of the regulation of lysosome position by Rab34
Within a cell, the regulation of organelle positioning is considered to be critical in spatio-temporal responses. The position of late endocytic organelles (named here lysosomes for simplicity) is tightly controlled and has a functional impact on processes like endocytosis, phagocytosis and autophagocytosis. The cytoplasmic distribution profile of lysosomes can be easily determined in cells where the cytoplasm/nuclear ratio in a cross-section area is high. However, determining lysosomal position in cells with lower cytoplasm/nuclear ratio, such as macrophages is more challenging. Here, we describe a method that can be efficiently and accurately used to determine the position of organelles in macrophages using confocal microscopy in two-dimensional (2D) images. Using this approach in macrophages, we confirmed previous observations in epithelial cells that both changes in cytoplasmic pH and the levels of active Rab34 induced a re-distribution of lysosomes to the cell centre or periphery. Noteworthy is that this Rab34-dependent re-distribution of lysosomes did not significantly affect the spatial distribution profile of phagolysosomes in the cytoplasm. We conclude that although Rab34 regulates both lysosomal positioning and lysosome to phagosome fusion, the latter effect is not due to the regulation of the cytoplasmic accessibility of lysosomes to phagosomes by Rab34.
- Helmholtz Center for Information Security Germany
- Helmholtz Association of German Research Centres Germany
- Fudan University China (People's Republic of)
- National Institute for Medical Research United Kingdom
- Medical Research Council United Kingdom
Macrophages, Nuclear Proteins, Transfection, Mice, rab GTP-Binding Proteins, Cell Line, Tumor, Phagosomes, Space Perception, Animals, Humans, Lysosomes, Cells, Cultured
Macrophages, Nuclear Proteins, Transfection, Mice, rab GTP-Binding Proteins, Cell Line, Tumor, Phagosomes, Space Perception, Animals, Humans, Lysosomes, Cells, Cultured
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
