Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Biochemistry & Cell Biology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Spatial distribution of phagolysosomes is independent of the regulation of lysosome position by Rab34

Authors: Bahram, Kasmapour; Liang, Cai; Maximiliano Gabriel, Gutierrez;

Spatial distribution of phagolysosomes is independent of the regulation of lysosome position by Rab34

Abstract

Within a cell, the regulation of organelle positioning is considered to be critical in spatio-temporal responses. The position of late endocytic organelles (named here lysosomes for simplicity) is tightly controlled and has a functional impact on processes like endocytosis, phagocytosis and autophagocytosis. The cytoplasmic distribution profile of lysosomes can be easily determined in cells where the cytoplasm/nuclear ratio in a cross-section area is high. However, determining lysosomal position in cells with lower cytoplasm/nuclear ratio, such as macrophages is more challenging. Here, we describe a method that can be efficiently and accurately used to determine the position of organelles in macrophages using confocal microscopy in two-dimensional (2D) images. Using this approach in macrophages, we confirmed previous observations in epithelial cells that both changes in cytoplasmic pH and the levels of active Rab34 induced a re-distribution of lysosomes to the cell centre or periphery. Noteworthy is that this Rab34-dependent re-distribution of lysosomes did not significantly affect the spatial distribution profile of phagolysosomes in the cytoplasm. We conclude that although Rab34 regulates both lysosomal positioning and lysosome to phagosome fusion, the latter effect is not due to the regulation of the cytoplasmic accessibility of lysosomes to phagosomes by Rab34.

Keywords

Macrophages, Nuclear Proteins, Transfection, Mice, rab GTP-Binding Proteins, Cell Line, Tumor, Phagosomes, Space Perception, Animals, Humans, Lysosomes, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average