<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Molecular analysis of the para locus, a sodium channel gene in Drosophila

pmid: 2550145
Molecular analysis of the para locus, a sodium channel gene in Drosophila
Previous behavioral, electrophysiological, pharmacological, and genetic studies of mutations of the para locus in Drosophila melanogaster suggested that these mutations alter the structure or function of sodium channels. To identify the protein encoded by this gene and to elucidate the molecular basis of the mutant phenotypes, genomic DNA from the para locus was cloned. Mutational lesions in nine different para alleles were mapped and found to be distributed over a region of 45 kb. Analysis of cDNAs revealed that the para locus comprises a minimum of 26 exons distributed over more than 60 kb of genomic DNA. The nucleotide sequence of the complementary DNA predicts a protein whose structure and amino acid sequence are extremely similar to those of vertebrate sodium channels. The results support the conclusion that para encodes a functionally predominant class of sodium channels in Drosophila neurons. Furthermore, the para transcript appears to undergo alternative splicing to produce several distinct subtypes of this channel.
- University of Wisconsin–Oshkosh United States
Base Sequence, Molecular Sequence Data, Chromosome Mapping, Membrane Proteins, Nucleic Acid Hybridization, DNA, Exons, Sodium Channels, Blotting, Southern, Drosophila melanogaster, Genes, Sequence Homology, Nucleic Acid, Animals, Amino Acid Sequence, Alleles
Base Sequence, Molecular Sequence Data, Chromosome Mapping, Membrane Proteins, Nucleic Acid Hybridization, DNA, Exons, Sodium Channels, Blotting, Southern, Drosophila melanogaster, Genes, Sequence Homology, Nucleic Acid, Animals, Amino Acid Sequence, Alleles
63 Research products, page 1 of 7
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).480 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%