Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Roles of Copper Ligands in the Activation and Secretion ofStreptomyces Tyrosinase

Authors: T Y, Tsai; Y H, Lee;

Roles of Copper Ligands in the Activation and Secretion ofStreptomyces Tyrosinase

Abstract

The expression of the melanin operon (melC) of Streptomyces antibioticus requires the chaperone-like protein MelC1 for the incorporation of two copper ions (designated as CuA and CuB) and the secretion of the apotyrosinase (MelC2) via a transient binary complex formation between these two proteins. To investigate whether the copper ligand of tyrosinase is involved in this MelC1.MelC2 binary complex function, six single substitution mutations were introduced into the CuA and CuB sites. These mutations led to differential effects on the stability, copper content, and export function of binary complexes but a complete abolishment of tyrosinase activity. The defects in the tyrosinase activity in mutants were not because of the impairment of the formation of MelC1. MelC2 complex but rather the failure of MelC2 to be discharged from the copper-activated binary complex. Moreover, the impairments on the discharge of the mutant MelC2 from all the mutant binary complexes appeared to result from the structural changes in their apoforms or copper-activated forms of the complexes, as evidenced by the fluorescence emission and circular dichroism spectral analysis. Therefore, each of six copper ligands in Streptomyces tyrosinase binuclear copper sites plays a pivotal role in the final maturation and the discharge of tyrosinase from the binary complex but has a less significant role in its secretion.

Keywords

Melanins, Macromolecular Substances, Monophenol Monooxygenase, Protein Conformation, Circular Dichroism, Molecular Sequence Data, Streptomyces antibioticus, Ligands, Enzyme Activation, Bacterial Proteins, Operon, Trans-Activators, Amino Acid Sequence, Copper, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Average
gold