Genetic Variations Strongly Influence Phenotypic Outcome in the Mouse Retina
Genetic Variations Strongly Influence Phenotypic Outcome in the Mouse Retina
Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2(-nb1) at embryonic day 18.5 (E18.5) and postnatal day 30.5 (P30.5). Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases.
- Harvard University United States
- University of Utah United States
- Smith-Kettlewell Eye Research Institute United States
- University of Nebraska Medical Center United States
- Massachusetts Eye and Ear Infirmary United States
Reverse Transcriptase Polymerase Chain Reaction, Science, Q, Blotting, Western, R, Genetic Variation, Immunohistochemistry, Retina, Mice, Phenotype, Retinal Cone Photoreceptor Cells, Medicine, Animals, Research Article, Oligonucleotide Array Sequence Analysis
Reverse Transcriptase Polymerase Chain Reaction, Science, Q, Blotting, Western, R, Genetic Variation, Immunohistochemistry, Retina, Mice, Phenotype, Retinal Cone Photoreceptor Cells, Medicine, Animals, Research Article, Oligonucleotide Array Sequence Analysis
214 Research products, page 1 of 22
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
