Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The neurofibromatosis 2 tumor suppressor protein interacts with hepatocyte growth factor-regulated tyrosine kinase substrate

Authors: D R, Scoles; D P, Huynh; M S, Chen; S P, Burke; D H, Gutmann; S M, Pulst;

The neurofibromatosis 2 tumor suppressor protein interacts with hepatocyte growth factor-regulated tyrosine kinase substrate

Abstract

The neurofibromatosis 2 tumor suppressor protein schwannomin/merlin is commonly mutated in schwannomas and meningiomas. Schwannomin, a member of the 4.1 family of proteins, which are known to link the cytoskeleton to the plasma membrane, has little known function other than its ability to suppress tumor growth. Using yeast two-hybrid interaction cloning, we identified the HGF-regulated tyrosine kinase substrate (HRS) as a schwannomin interactor. We verified the interaction by both immunoprecipitation of endogenous HRS with endogenous schwannomin in vivo as well as by using bacterially purified HRS and schwannomin in vitro. We narrowed the regions of interaction to include schwannomin residues 256-579 and HRS residues from 480 to the end of either of two HRS isoforms. Schwannomin molecules with a L46R, L360P, L535P or Q538P missense mutation demonstrated reduced affinity for HRS binding. As HRS is associated with early endosomes and may mediate receptor translocation to the lysosome, we demonstrated that schwannomin and HRS co-localize at endosomes using the early endosome antigen 1 in STS26T Schwann cells by indirect immunofluorescence. The identification of schwannomin as a HRS interactor implicates schwannomin in HRS-mediated cell signaling.

Keywords

Adult, Neurofibromin 2, Binding Sites, DNA, Complementary, Microscopy, Confocal, Endosomal Sorting Complexes Required for Transport, Recombinant Fusion Proteins, Molecular Sequence Data, Membrane Proteins, Endosomes, Sequence Analysis, DNA, Phosphoproteins, Microscopy, Fluorescence, Genes, Neurofibromatosis 2, Mutation, Tumor Cells, Cultured, Humans, Plasmids, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
bronze