Powered by OpenAIRE graph

FIX-Triple, a gain-of-function factor IX variant, improves haemostasis in mouse models without increased risk of thrombosis

Authors: Chung-Yang, Kao; Chia-Ni, Lin; I-Shing, Yu; Mi-Hua, Tao; Hua-Lin, Wu; Guey-Yueh, Shi; Yung-Li, Yang; +2 Authors

FIX-Triple, a gain-of-function factor IX variant, improves haemostasis in mouse models without increased risk of thrombosis

Abstract

SummaryEngineered recombinant factor IX (FIX) with augmented clotting activity may prove useful for replacement therapy, but it has not been studied for risk of thrombosis. We used three mouse models to evaluate thrombosis risk associated with the FIX variant FIX-Triple, which has a 13-fold higher specific activity than wild-type FIX (FIX-WT). Protein infusion of FIX-Triple into haemophilia B mice was not thrombogenic, even at a dose of 13-fold higher than FIX-WT. Gene knock-in to generate mice that constitutively produce FIX-WT or FIX-Triple protein revealed that all mice expressed equal antigen levels. FIX-Triple knock-in mice that exhibited 10-fold higher FIX clotting activity did not show hypercoagulation. Adeno-associated viral (AAV) delivery of the FIX gene into mice was used to mimic gene therapy. Haemophilia B and inbred C57Bl/6 mice injected with different doses of virus particles carrying FIX-WT or FIX-Triple and expressing up to a nearly 13-fold excess (1289% of normal) of FIX clotting activity did not show increased risk of thrombosis compared with untreated wild-type mice in a normal haemostatic state. When challenged with ferric chloride (FeCl3), the mesenteric venules of AAV-treated C57Bl/6 mice that gave a nearly five-fold excess (474%) of FIX clotting activity were not thrombotic; however, thrombosis became obvious in FeCl3-challenged mice expressing extremely high FIX clotting activities (976–1289%) achieved by AAV delivery of FIX-Triple. These studies suggest that FIX-Triple is not thrombogenic at therapeutic levels and is a potential therapeutic substitute for FIX-WT.

Keywords

Hemostasis, Dose-Response Relationship, Drug, Coagulants, Genetic Vectors, Mice, Transgenic, Genetic Therapy, Dependovirus, Ferric Compounds, Hemophilia B, Mice, Mutant Strains, Factor IX, Mice, Inbred C57BL, Disease Models, Animal, Mice, Chlorides, Mutation, Laser-Doppler Flowmetry, Animals, Humans, Infusions, Intravenous

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%