Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2005
versions View all 3 versions

Inhibition of RhoA‐mediated SRF activation by p116Rip

Authors: Wouter H. Moolenaar; Aafke Ariaens; Francis P.G. van Horck; Jacqueline Mulder;

Inhibition of RhoA‐mediated SRF activation by p116Rip

Abstract

p116Rip, originally identified as a binding partner of activated RhoA, is an actin‐binding protein that interacts with the regulatory myosin‐binding subunit (MBS) of myosin‐II phosphatase and is essential for Rho‐regulated cytoskeletal contractility. Here, we have examined the role of p116Rip in RhoA‐mediated activation of the transcription factor SRF. We show that p116Rip oligomerizes via its C‐terminal coiled‐coil domain and, when overexpressed, inhibits RhoA‐induced SRF activation without affecting RhoA‐GTP levels. Mutant forms of p116Rip that fail to oligomerize or bind to MBS are still capable of inhibiting SRF activity. Our results suggest that p116Rip interferes with RhoA‐mediated transcription through its ability to disassemble the actomyosin cytoskeleton downstream of RhoA.

Related Organizations
Keywords

Serum Response Factor, Myosin Light Chains, Transcription, Genetic, Microfilament Proteins, Molecular Sequence Data, RhoA, Actin-binding protein, Protein Structure, Tertiary, Mice, Serum Response Element, Mutation, Animals, Humans, Coiled-coil, SRF, Amino Acid Sequence, rhoA GTP-Binding Protein, Cytoskeleton, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Average
bronze