Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimiearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimie
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Biochimie
Article . 1995
versions View all 2 versions

The family of subtilisin/kexin like pro-protein and pro-hormone convertases: Divergent or shared functions

Authors: Michel Chrétien; Nabil G. Seidah; R Day;

The family of subtilisin/kexin like pro-protein and pro-hormone convertases: Divergent or shared functions

Abstract

Six mammalian processing enzymes were recently discovered which exhibit significant similarities to both yeast kexin and bacterial subtilisins. These subtilisin/kexin-like convertases were called furin/PACE, PC1/PC3, PC2, PACE4, PC4 and PC5/PC6. The analysis of the mRNA expression of these convertases in rat tissues and cell lines by Northern blot analysis demonstrated a unique pattern for each enzyme. Thus, although furin and PACE4 mRNA (4.4 kb each) exhibit a widespread tissue distribution only furin is ubiquitously expressed. PACE4 exhibits a major 4.4 kb mRNA form, and in some tissues a 3.9 kb form is detected. PC5 mRNA (3.8 kb major) is more restricted in its distribution than PACE4 and furin, and it exhibits the presence of multiple mRNA forms, resulting in variable lengths of the C-terminal Cys-rich domain. In addition, like furin and PACE4, PC5 is expressed in both regulated and constitutively secreting cells. In contrast, PC1 (3 and 5 kb) and PC2 (2.8 and 5 kb) are primarily expressed in tissues and cells containing secretory granules. Multiple mRNA forms are also detected, but as far as is known none affect their open reading frame and only result in a variable length of the 3' non-coding sequence. Finally, PC4 mRNA (2.8 kb major and 1.9 kb minor) is only expressed in testicular germ cells. Biosynthetic analysis of the zymogen activation of PC1 and PC2 and their cleavage specificity following their cellular co-expression with a number of precursors, demonstrated that although pro-PC1 is rapidly activated to PC1 in the endoplasmic reticulum, pro-PC2 conversion into PC2 is rather slow. The cleavage of pro-PC2 into PC2 starts in the trans Golgi network and is regulated by an endogenous endocrine and neural precursor called 7B2. Although the genetic organization of the convertase genes is very similar, they exhibit unique promoter sequences and only furin and PACE4 genes are localized on the same chromosome.

Keywords

Mammals, Saccharomyces cerevisiae Proteins, Bacteria, Sequence Homology, Amino Acid, Molecular Sequence Data, Brain, Chromosome Mapping, Saccharomyces cerevisiae, Rats, Mice, Spinal Cord, Endopeptidases, Animals, Humans, Amino Acid Sequence, Proprotein Convertases, RNA, Messenger, Subtilisins, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    419
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
419
Top 10%
Top 1%
Top 0.1%