Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cellular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Physiology
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

CRF1 receptor splicing in epidermal keratinocytes: Potential biological role and environmental regulations

Authors: Michal A, Zmijewski; Andrzej T, Slominski;

CRF1 receptor splicing in epidermal keratinocytes: Potential biological role and environmental regulations

Abstract

AbstractCorticotropin releasing factor receptor type 1 (CRF1), a coordinator of the body responses to stress, is also expressed in human skin, where it undergoes alternative splicing. Since the epidermis is continuously exposed to the environmental stress, human keratinocytes were chosen to study the biological role of CRF1 alternative splicing. The expression pattern of CRF1 isoforms depended on cell density, presence or absence of serum, and exposure to ultraviolet irradiation (UVR). Only two isoforms α and c were predominantly localized to the cell membrane, with only CRF1α being efficient in stimulating cAMP responding element (CRE). CRF1d, f and g had intracellular localization, showing no or very low (g) activation of CRE. The co‐expression of CRF1α with d, f or g resulted in intracellular retention of both isoforms suggesting dimerization confirmed by detection of high molecular weight complexes. The soluble isoforms e and h were diffusely distributed in the cytoplasm or localized to the ER, respectively, and additionally found in culture medium. These findings suggest that alternatively spliced CRF1 isoforms can interact and modify CRF1α subcellular localization, thus affecting its activity. We suggest that alternative splicing of CRF1 may play an important role in the regulation of skin cell phenotype with potential implications in pathology. J. Cell. Physiol. 218: 593–602, 2009. Published 2008 Wiley‐Liss, Inc.

Keywords

Keratinocytes, Glycosylation, Recombinant Fusion Proteins, Cell Membrane, Environment, Response Elements, Models, Biological, Receptors, Corticotropin-Releasing Hormone, Alternative Splicing, Luminescent Proteins, Protein Transport, Epidermal Cells, Solubility, Humans, Protein Isoforms, Epidermis, Cells, Cultured, Protein Binding, Signal Transduction, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze