Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Multimerization and interaction of Toll and Spätzle in Drosophila

Authors: Hu, Xiaodi; Yagi, Yoshimasa; Tanji, Takahiro; Zhou, Sili L.; Ip, Y. Tony;

Multimerization and interaction of Toll and Spätzle in Drosophila

Abstract

The Toll family of receptors is required for innate immune response to pathogen-associated molecules, but the mechanism of signaling is not entirely clear. In Drosophila the prototypic Toll regulates both embryonic development and adult immune response. We demonstrate here that the host protein Spätzle can function as a ligand for Toll because Spätzle forms a complex with Toll in transgenic fly extracts and stimulates the expression of a Toll-dependent immunity gene, drosomycin , in adult flies. We also show that constitutively active mutants of Toll form multimers that contain intermolecular disulfide linkages. These disulfide linkages are critical for the activity of one of these mutant receptors, indicating that multimerization is essential for the constitutive activity. Furthermore, systematic mutational analysis revealed that a conserved cysteine-containing motif, different from the cysteines used for the intermolecular disulfide linkages, serves as a self-inhibitory module of Toll. Deleting or mutating this cysteine-containing motif leads to constitutive activity. This motif is located just outside the transmembrane domain and may provide a structural hindrance for multimerization and activation of Toll. Together, our results suggest that multimerization may be a regulated, essential step for Toll-receptor activation.

Related Organizations
Keywords

570, Antifungal Agents, Macromolecular Substances, Genetically Modified, Receptors, Cell Surface, Animals, Genetically Modified, Receptors, Medicine and Health Sciences, Site-Directed, Animals, Drosophila Proteins, Cysteine, Disulfides, Cloning, Molecular, Sequence Deletion, Toll-Like Receptors, Molecular, Life Sciences, 500, Recombinant Proteins, Kinetics, Mutagenesis, Cell Surface, Mutagenesis, Site-Directed, Drosophila, Cloning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 10%
Top 10%
Top 10%
bronze