Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

ADAMTS-12 Associates with and Degrades Cartilage Oligomeric Matrix Protein

Authors: Chuan-ju, Liu; Wei, Kong; Ke, Xu; Yi, Luan; Kiril, Ilalov; Bantoo, Sehgal; Shuang, Yu; +2 Authors

ADAMTS-12 Associates with and Degrades Cartilage Oligomeric Matrix Protein

Abstract

Loss of articular cartilage because of extracellular matrix breakdown is the hallmark of arthritis. Degradative fragments of cartilage oligomeric matrix protein (COMP), a prominent noncollagenous matrix component in articular cartilage, have been observed in the cartilage, synovial fluid, and serum of arthritis patients. The molecular mechanism of COMP degradation and the enzyme(s) responsible for it, however, remain largely unknown. ADAMTS-12 (a disintegrin and metalloprotease with thrombospondin motifs) was shown to associate with COMP both in vitro and in vivo. ADAMTS-12 selectively binds to only the epidermal growth factor-like repeat domain of COMP of the four functional domains tested. The four C-terminal TSP-1-like repeats of ADAMTS-12 are shown to be necessary and sufficient for its interaction with COMP. Recombinant ADAMTS-12 is capable of digesting COMP in vitro. The COMP-degrading activity of ADAMTS-12 requires the presence of Zn2+ and appropriate pH (7.5-9.5), and the level of ADAMTS-12 in the cartilage and synovium of patients with both osteoarthritis and rheumatoid arthritis is significantly higher than in normal cartilage and synovium. Together, these findings indicate that ADAMTS-12 is a new COMP-interacting and -degrading enzyme and thus may play an important role in the COMP degradation in the initiation and progression of arthritis.

Related Organizations
Keywords

Extracellular Matrix Proteins, Hydrolysis, Cartilage Oligomeric Matrix Protein, Polymerase Chain Reaction, Bone and Bones, ADAM Proteins, ADAMTS Proteins, Humans, Immunoprecipitation, Matrilin Proteins, Glycoproteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%
gold