Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes to Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes to Cells
Article . 2017 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes to Cells
Article
License: CC BY NC
Data sources: UnpayWall
Genes to Cells
Article . 2017
versions View all 2 versions

3D structural analysis of protein O‐mannosyl kinase, POMK, a causative gene product of dystroglycanopathy

Authors: Masamichi, Nagae; Sushil K, Mishra; Makiko, Neyazaki; Rika, Oi; Akemi, Ikeda; Naohiro, Matsugaki; Satoko, Akashi; +8 Authors

3D structural analysis of protein O‐mannosyl kinase, POMK, a causative gene product of dystroglycanopathy

Abstract

Orchestration of the multiple enzymes engaged in O‐mannose glycan synthesis provides a matriglycan on α‐dystroglycan (α‐DG) which attracts extracellular matrix (ECM) proteins such as laminin. Aberrant O‐mannosylation of α‐DG leads to severe congenital muscular dystrophies due to detachment of ECM proteins from the basal membrane. Phosphorylation at C6‐position of O‐mannose catalyzed by protein O‐mannosyl kinase (POMK) is a crucial step in the biosynthetic pathway of O‐mannose glycan. Several mis‐sense mutations of the POMK catalytic domain are known to cause a severe congenital muscular dystrophy, Walker–Warburg syndrome. Due to the low sequence similarity with other typical kinases, structure–activity relationships of this enzyme remain unclear. Here, we report the crystal structures of the POMK catalytic domain in the absence and presence of an ATP analogue and O‐mannosylated glycopeptide. The POMK catalytic domain shows a typical protein kinase fold consisting of N‐ and C‐lobes. Mannose residue binds to POMK mainly via the hydroxyl group at C2‐position, differentiating from other monosaccharide residues. Intriguingly, the two amino acid residues K92 and D228, interacting with the triphosphate group of ATP, are donated from atypical positions in the primary structure. Mutations in this protein causing muscular dystrophies can now be rationalized.

Keywords

Mice, Catalytic Domain, Mutation, Animals, Humans, Crystallography, X-Ray, Dystroglycans, Protein Kinases, Muscular Dystrophies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
hybrid