Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2011 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Intranuclear Function for Protein Phosphatase 2A: Pph21 and Pph22 Are Required for Rapamycin-Induced GATA Factor Binding to the DAL5 Promoter in Yeast

Authors: Georis, Isabelle; Tate, Jennifer; Feller, André; Cooper, Terrance G; Dubois, Evelyne;

Intranuclear Function for Protein Phosphatase 2A: Pph21 and Pph22 Are Required for Rapamycin-Induced GATA Factor Binding to the DAL5 Promoter in Yeast

Abstract

Protein phosphatase 2A (PP2A), a central Tor pathway phosphatase consisting of a catalytic subunit (Pph21 or Pph22), a scaffold subunit (Tpd3), and one of two regulatory subunits (Cdc55 or Rts1), has been repeatedly shown to play important roles in cytoplasmically localized signal transduction activities. In contrast, its involvement in intranuclear control of mRNA production has heretofore not been reported. Here, we demonstrate for the first time that binding of the nitrogen catabolite repression-responsive GATA transcription activators (Gln3 and Gat1) to the DAL5 promoter and DAL5 expression require Pph21/22-Tpd3-Cdc55/Rts1 in rapamycin-treated glutamine-grown cells. This conclusion is supported by the following observations. (i) Rapamycin-induced DAL5 expression along with Gln3 and Gat1 binding to the DAL5 promoter fails to occur in pph21Δ pph22Δ, tpd3Δ, and cdc55Δ rts1Δ mutants. (ii) The Pph21/22 requirement persists even when Gat1 and Gln3 are rendered constitutively nuclear, thus dissociating the intranuclear requirement of PP2A from its partial requirement for rapamycin-induced nuclear Gat1 localization. (iii) Pph21-Myc(13) (Ppp21 tagged at the C terminus with 13 copies of the Myc epitope) weakly associates with the DAL5 promoter in a Gat1-dependent manner, whereas a similar Pph22-Myc(13) association requires both Gln3 and Gat1. Finally, we demonstrate that a pph21Δ pph22Δ double mutant is epistatic to ure2Δ for nuclear Gat1 localization in untreated glutamine-grown cells, whereas for Gln3, just the opposite occurs: i.e., ure2Δ is epistatic to pph21Δ pph22Δ. This final observation adds additional support to our previous conclusion that the Gln3 and Gat1 GATA factor localizations are predominantly controlled by different regulatory pathways.

Keywords

Saccharomyces cerevisiae Proteins, Cell Nucleus -- metabolism, Glutathione Peroxidase -- genetics -- metabolism, Prions, Protein Phosphatase 2 -- genetics -- metabolism, Recombinant Fusion Proteins, Genes, Fungal, Green Fluorescent Proteins, Membrane Transport Proteins -- genetics, Saccharomyces cerevisiae, Binding Sites -- genetics, Green Fluorescent Proteins -- genetics -- metabolism, GATA Transcription Factors, Promoter Regions, Genetic, Saccharomyces cerevisiae -- drug effects -- genetics -- metabolism, Protein Phosphatase 2, Promoter Regions, Genetic, DNA Primers, Cell Nucleus, Sirolimus, Glutathione Peroxidase, Binding Sites, Prions -- genetics -- metabolism, Base Sequence, Transcription Factors -- genetics -- metabolism, Recombinant Fusion Proteins -- genetics -- metabolism, Membrane Transport Proteins, Fungal, Genes, Sirolimus -- pharmacology, Mutation, Mutant Proteins -- genetics -- metabolism, Mutant Proteins, Sciences exactes et naturelles, DNA Primers -- genetics, GATA Transcription Factors -- genetics -- metabolism, Saccharomyces cerevisiae Proteins -- genetics -- metabolism, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%
bronze