Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Columbia University ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Molecular Pharmacology
Article . 2015 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.7916/d8d...
Other literature type . 2015
Data sources: Datacite
versions View all 5 versions

Essential Roles of Intracellular Calcium Release Channels in Muscle, Brain, Metabolism, and Aging

Authors: SANTULLI, GAETANO; Marks, Andrew R.;

Essential Roles of Intracellular Calcium Release Channels in Muscle, Brain, Metabolism, and Aging

Abstract

Calcium (Ca2+) release from intracellular stores controls numerous cellular processes, including cardiac and skeletal muscle contraction, synaptic transmission and metabolism. The ryanodine receptors (RyRs) and inositol 1,4,5--trisphosphate receptors (IP3Rs) are the majorCa2+ release channels (CRCs) on the endo/sarcoplasmic reticulum(ER/SR).RyR1 and RyR2 are the key isoforms in skeletal and cardiac muscle and are essential role in excitation--contraction(E--C) coupling. IP3R1 and IP3R2 are required for muscle and neuronal function. RyRs and IP3Rs comprise macromolecular signaling complexes that include modulatory proteins which regulate channel activity in response to extracellular signals resulting in intracellular Ca2+ release. This review focuses on the roles of CRCs in heart, skeletal muscle, brain, and aging.

Keywords

Aging, 4, Intracellular Space, 610, Pathology, Humans, Inositol 1,4,5-Trisphosphate Receptors, Protein Isoforms, Muscle, Skeletal, Cognition in old age, 5-Trisphosphate Receptors, Brain, 600, Ryanodine Receptor Calcium Release Channel, Skeletal, Inositol 1, Sarcoplasmic Reticulum, Aging; Brain; Energy Metabolism; Humans; Inositol 1,4,5-Trisphosphate Receptors; Intracellular Space; Muscle, Skeletal; Protein Isoforms; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum, Muscle, Calcium, Ryanodine--Receptors, Energy Metabolism, Cytology, Gerontology, Arrhythmia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    179
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
179
Top 1%
Top 10%
Top 1%
Green
bronze