Post-Replication Repair Suppresses Duplication-Mediated Genome Instability
Post-Replication Repair Suppresses Duplication-Mediated Genome Instability
RAD6 is known to suppress duplication-mediated gross chromosomal rearrangements (GCRs) but not single-copy sequence mediated GCRs. Here, we found that the RAD6- and RAD18-dependent post-replication repair (PRR) and the RAD5-, MMS2-, UBC13-dependent error-free PRR branch acted in concert with the replication stress checkpoint to suppress duplication-mediated GCRs formed by homologous recombination (HR). The Rad5 helicase activity, but not its RING finger, was required to prevent duplication-mediated GCRs, although the function of Rad5 remained dependent upon modification of PCNA at Lys164. The SRS2, SGS1, and HCS1 encoded helicases appeared to interact with Rad5, and epistasis analysis suggested that Srs2 and Hcs1 act upstream of Rad5. In contrast, Sgs1 likely functions downstream of Rad5, potentially by resolving DNA structures formed by Rad5. Our analysis is consistent with models in which PRR prevents replication damage from becoming double strand breaks (DSBs) and/or regulates the activity of HR on DSBs.
- University of California, San Diego United States
- University of California, San Diego United States
DNA Replication, Gene Rearrangement, Recombination, Genetic, Saccharomyces cerevisiae Proteins, DNA Repair, DNA Helicases, Saccharomyces cerevisiae, QH426-470, Genomic Instability, Ubiquitin-Conjugating Enzymes, Genetics, Chromosomes, Fungal, Research Article, DNA Damage
DNA Replication, Gene Rearrangement, Recombination, Genetic, Saccharomyces cerevisiae Proteins, DNA Repair, DNA Helicases, Saccharomyces cerevisiae, QH426-470, Genomic Instability, Ubiquitin-Conjugating Enzymes, Genetics, Chromosomes, Fungal, Research Article, DNA Damage
30 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
