Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions

Direct interaction between NHERF1 and Frizzled regulates β-catenin signaling

Authors: Wheeler, David S.; Barrick, Stacey R.; Grubisha, Melanie J.; Brufsky, Adam M.; Friedman, Peter A.; Romero, Guillermo;

Direct interaction between NHERF1 and Frizzled regulates β-catenin signaling

Abstract

Although Wnt-Frizzled (Fzd) signaling is critical in the pathophysiology of carcinomas, its role in human breast cancer has been difficult to establish. We show here that the adaptor protein Na(+)/H(+) exchange regulatory factor1 (NHERF1), a protein abundantly expressed in normal mammary epithelium, regulates Wnt signaling, maintaining low levels of β-catenin activation. NHERF1's effects are mediated by direct interactions between one of its PSD-95/drosophila discs large/ZO-1 (PDZ) domains and the C-terminus of a subset of Fzd receptors. Loss of NHERF1 in breast cancer cell lines enhances canonical Wnt signaling and Wnt-dependent cell proliferation. Furthermore, the mammary glands of NHERF1-knockout mice exhibit increased mammary duct density accompanied by increased proliferation and β-catenin activity. Finally, we demonstrate a negative correlation between NHERF1 expression and nuclear β-catenin in human breast carcinomas. Taken together, these results provide a novel insight into the regulation of Wnt signaling in normal and neoplastic breast tissues, and identify NHERF1 as an important regulator of the pathogenesis of breast tumors.

Keywords

Mice, Knockout, Sodium-Hydrogen Exchangers, Breast Neoplasms, Phosphoproteins, Article, Frizzled Receptors, Mice, Cricetulus, Cricetinae, Animals, Humans, Female, beta Catenin, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
bronze