Powered by OpenAIRE graph

Effects of okadaic acid, calyculin A, and PDBu on state of phosphorylation of rat renal Na+-K+-ATPase

Authors: D, Li; S X, Cheng; G, Fisone; M J, Caplan; Y, Ohtomo; A, Aperia;

Effects of okadaic acid, calyculin A, and PDBu on state of phosphorylation of rat renal Na+-K+-ATPase

Abstract

Several indirect lines of evidence suggest that protein kinases and phosphatases modulate the activity of renal Na+-K+-ATPase. The aim of this study was to examine whether such regulation may occur via modulation of the state of phosphorylation of Na+-K+-ATPase. Slices from rat renal cortex were prelabeled with [32P]orthophosphate and incubated with the inhibitors of protein phosphatase (PP)-1 and PP-2A, okadaic acid (OA) and calyculin A (CL-A), respectively, the protein kinase C (PKC) activator, phorbol 12,13-dibutyrate (PDBu), or the PP-2B inhibitor, FK-506. Phosphorylation of Na+-K+-ATPase α-subunit was evaluated by measuring the amount of [32P]phosphate incorporation into the immunoprecipitated protein. Incubation with either OA, CL-A, or PDBu caused four- to fivefold increases in the amount of [32P]phosphate incorporation into immunoprecipitated Na+-K+-ATPase α-subunit. OA and PDBu had a synergistic effect on the state of phosphorylation of Na+-K+-ATPase α-subunit. FK-506 did not affect Na+-K+-ATPase phosphorylation, neither alone nor in the presence of PDBu. Each of the drugs, OA, CL-A, and PDBu, inhibited the activity of Na+-K+-ATPase in microdissected proximal tubules. PDBu potentiated OA-induced inhibition of Na+-K+-ATPase activity. Inhibition of Na+-K+-ATPase required a lower dose of CL-A than of OA. On the basis of the inhibitory constant values of CL-A and OA for PP-1 and PP-2A, it is concluded that the tubular effect is mainly due to inhibition of PP-1. The PP-1 activity in rat renal cortex was ∼1.5 nmol Pi⋅ mg protein−1⋅ min−1. Using a monoclonal anti-α antibody that fails to recognize the subunit when Ser23is phosphorylated by PKC, we demonstrated that the dose response of PDBu inhibition of Na+-K+-ATPase correlated with the dose response of phosphorylation of the enzyme. The results suggest that the state of phosphorylation and activity of proximal tubular Na+-K+-ATPase are determined by the balance between the activities of protein kinases and phosphatases.

Related Organizations
Keywords

Male, Dopamine and cAMP-Regulated Phosphoprotein 32, Dose-Response Relationship, Drug, Nerve Tissue Proteins, In Vitro Techniques, Kidney, Phosphoproteins, Rats, Enzyme Activation, Rats, Sprague-Dawley, Okadaic Acid, Phosphoprotein Phosphatases, Animals, Marine Toxins, Enzyme Inhibitors, Phosphorylation, Sodium-Potassium-Exchanging ATPase, Oxazoles, Phorbol 12,13-Dibutyrate, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%