Powered by OpenAIRE graph

The Regulatory Role of Rho GTPases and their Substrates in Osteoclastogenesis

Authors: Lin, Gao; Lingbo, Kong; Yuanting, Zhao;

The Regulatory Role of Rho GTPases and their Substrates in Osteoclastogenesis

Abstract

Pathological bone loss diseases (osteolysis, Paget’s diseases) are commonly caused by the excessive differentiation and activity of osteoclasts. The Rho GTPases family members Rac1/2 (Rac1 and Rac2) have been reported for their special role in exerting multiple cellular functions during osteoclastic differentiation, which includes the most prominent function on dynamic actin cytoskeleton rearranging. Besides that, the increasing studies demonstrated that the regulating effects of Rac1/2 on the osteoclastic cytoskeletal organization are through the GEFs member Dock5. Although the amount of relevant studies on this topic is still limited, several excellent studies have been reported that extensively explored the molecular mechanisms involved in Rac1/2 and Dock5 during the osteoclastogenesis regulation, as well as their role as the therapeutic target in bone loss diseases. Herein, in this review, we aim to focus on recent advances studies for extensively understanding the role of Rho GTPases Rac1/2 and Dock5 in osteoclastogenesis, as well as their role as a potential therapeutic target in regulating osteoclastogenesis.

Related Organizations
Keywords

rac1 GTP-Binding Protein, rho GTP-Binding Proteins, Osteogenesis, RAC2 GTP-Binding Protein, Guanine Nucleotide Exchange Factors, Humans, Osteoclasts, Cell Differentiation, rac GTP-Binding Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%