Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuropath...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2016
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2016
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2016
Data sources: HAL AMU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuropathology & Experimental Neurology
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions

Contactin-Associated Protein 1 ( CNTNAP1 ) Mutations Induce Characteristic Lesions of the Paranodal Region

Authors: Nizon, Mathilde; Magee, Alex; Isidor, Bertrand; Magy, Laurent; Péréon, Yann; Richard, Laurence; Ouvrier, Robert; +5 Authors

Contactin-Associated Protein 1 ( CNTNAP1 ) Mutations Induce Characteristic Lesions of the Paranodal Region

Abstract

Congenital hypomyelinating neuropathy is a rare neonatal syndrome responsible for hypotonia and weakness. Nerve microscopic examination shows amyelination or hypomyelination. Recently, mutations in CNTNAP1 have been described in a few patients. CNTNAP1 encodes contactin-associated protein 1 (caspr-1), which is an essential component of the paranodal junctions of the peripheral and central nervous systems, and is necessary for the establishment of transverse bands that stabilize paranodal axo-glial junctions. We present the results of nerve biopsy studies of three patients from two unrelated, non-consanguineous families with compound heterozygous CNTNAP1 mutations. The lesions were identical, characterized by a hypomyelinating process; on electron microscopy, we detected, in all nodes of Ranvier, subtle lesions that have never been previously described in human nerves. Transverse bands of the myelin loops were absent, with a loss of attachment between myelin and the axolemma; elongated Schwann cell processes sometimes dissociated the Schwann cell and axon membranes that bound the space between them. These lesions were observed in the area where caspr-1 is located and are reminiscent of the lesions reported in sciatic nerves of caspr-1 null mice. CNTNAP1 mutations appear to induce characteristic ultrastructural lesions of the paranodal region.

Country
France
Keywords

Male, CNTNAP1, Cell Adhesion Molecules, Neuronal, [SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology, Infant, Newborn, Nerve biopsy, Pedigree, Sural Nerve, Mutation, Node of Ranvier, Contactin, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
bronze