A comprehensive genotype–phenotype evaluation of eight Chinese probands with Waardenburg syndrome
A comprehensive genotype–phenotype evaluation of eight Chinese probands with Waardenburg syndrome
Abstract Background Waardenburg syndrome (WS) is the most common form of syndromic deafness with phenotypic and genetic heterogeneity in the Chinese population. This study aimed to clarify the clinical characteristics and the genetic cause in eight Chinese WS families (including three familial and five sporadic cases). Further genotype–phenotype relationships were also investigated. Methods All probands underwent screening for the known WS-related genes including PAX3, SOX10, MITF, EDNRB, EDN3, and SNAI2 using next-generation sequencing to identify disease-causing genes. Further validation using Sanger sequencing was performed. Relevant findings for the associated genotype–phenotype from previous literature were retrospectively analyzed. Result Disease-causing variants were detected in all eight probands by molecular genetic analysis of the WS genes (SOX10(NM_006941.4): c.544_557del, c.553 C > T, c.762delA, c.336G > A; MITF(NM_000248.3): c.626 A > T; PAX3(NM_181459.4): c.838delG, c.452-2 A > G, c.214 A > G). Six mutations (SOX10:c.553 C > T, c.544_557del, c.762delA; PAX3: c.838delG, c.214 A > G; MITF:c.626 A > T) were first reported. Clinical evaluation revealed prominent phenotypic variability in these WS patients. Twelve WS1 cases and five WS2 cases were diagnosed in total. Two probands with SOX10 mutations developed progressive changes in iris color with age, returning from pale blue at birth to normal tan. Additionally, one proband had a renal malformation (horseshoe kidneys).All cases were first described as WS cases. Congenital inner ear malformations were more common, and semicircular malformations were exclusively observed in probands with SOX10 mutations. Unilateral hearing loss occurred more often in cases with PAX3 mutations. Conclusion Our findings helped illuminate the phenotypic and genotypic spectrum of WS in Chinese populations and could contribute to better genetic counseling of WS.
- The First People's Hospital of Changde China (People's Republic of)
- First Affiliated Hospital of University of South China China (People's Republic of)
- Xiangya Hospital Central South University China (People's Republic of)
China, Genotype, SOXE Transcription Factors, Research, Inner ear malformation, QH426-470, RC31-1245, Pedigree, Phenotype, Heterochromia iridis, Mutation, Genetics, Humans, Waardenburg Syndrome, Unilateral hearing loss, Internal medicine, Waardenburg syndrome, Retrospective Studies
China, Genotype, SOXE Transcription Factors, Research, Inner ear malformation, QH426-470, RC31-1245, Pedigree, Phenotype, Heterochromia iridis, Mutation, Genetics, Humans, Waardenburg Syndrome, Unilateral hearing loss, Internal medicine, Waardenburg syndrome, Retrospective Studies
7 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
