Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2009 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

Cross-Linking of GM1 Ganglioside by Galectin-1 Mediates Regulatory T Cell Activity Involving TRPC5 Channel Activation: Possible Role in Suppressing Experimental Autoimmune Encephalomyelitis

Authors: Jianfeng Wang; Christine Rohowsky-Kochan; Zi-Hua Lu; Hans-Joachim Gabius; Gusheng Wu; Robert W. Ledeen;

Cross-Linking of GM1 Ganglioside by Galectin-1 Mediates Regulatory T Cell Activity Involving TRPC5 Channel Activation: Possible Role in Suppressing Experimental Autoimmune Encephalomyelitis

Abstract

Abstract Several animal autoimmune disorders are suppressed by treatment with the GM1 cross-linking units of certain toxins such as B subunit of cholera toxin (CtxB). Due to the recent observation of GM1 being a binding partner for the endogenous lectin galectin-1 (Gal-1), which is known to ameliorate symptoms in certain animal models of autoimmune disorders, we tested the hypothesis that an operative Gal-1/GM1 interplay induces immunosuppression in a manner evidenced by both in vivo and in vitro systems. Our study of murine experimental autoimmune encephalomyelitis (EAE) indicated suppressive effects by both CtxB and Gal-1 and further highlighted the role of GM1 in demonstrating enhanced susceptibility to EAE in mice lacking this ganglioside. At the in vitro level, polyclonal activation of murine regulatory T (Treg) cells caused up-regulation of Gal-1 that was both cell bound and released to the medium. Similar activation of murine CD4+ and CD8+ effector T (Teff) cells resulted in significant elevation of GM1 and GD1a, the neuraminidase-reactive precursor to GM1. Activation of Teff cells also up-regulated TRPC5 channels which mediated Ca2+ influx upon GM1 cross-linking by Gal-1 or CtxB. This involved co-cross-linking of heterodimeric integrin due to close association of these α4β1 and α5β1 glycoproteins with GM1. Short hairpin RNA (shRNA) knockdown of TRPC5 in Teff cells blocked contact-dependent proliferation inhibition by Treg cells as well as Gal-1/CtxB-triggered Ca2+ influx. Our results thus indicate GM1 in Teff cells to be the primary target of Gal-1 expressed by Treg cells, the resulting co-cross-linking and TRPC5 channel activation contributing importantly to the mechanism of autoimmune suppression.

Keywords

CD4-Positive T-Lymphocytes, Mice, Knockout, Cholera Toxin, Encephalomyelitis, Autoimmune, Experimental, Galectin 1, G(M1) Ganglioside, CD8-Positive T-Lymphocytes, Flow Cytometry, Lymphocyte Activation, T-Lymphocytes, Regulatory, Mice, Cross-Linking Reagents, Spinal Cord, Animals, Immunoprecipitation, Female, TRPC Cation Channels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    184
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
184
Top 10%
Top 10%
Top 1%
bronze