Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2008
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2008
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2008
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2008
Data sources: CNR ExploRA
versions View all 8 versions

Targeting of PED/PEA-15 Molecular Interaction with Phospholipase D1 Enhances Insulin Sensitivity in Skeletal Muscle Cells

Authors: Viparelli F; Cassese A; Doti N; Paturzo F; Marasco D; Dathan NA; Monti SM; +10 Authors

Targeting of PED/PEA-15 Molecular Interaction with Phospholipase D1 Enhances Insulin Sensitivity in Skeletal Muscle Cells

Abstract

Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) is overexpressed in several tissues of individuals affected by type 2 diabetes. In intact cells and in transgenic animal models, PED/PEA-15 overexpression impairs insulin regulation of glucose transport, and this is mediated by its interaction with the C-terminal D4 domain of phospholipase D1 (PLD1) and the consequent increase of protein kinase C-alpha activity. Here we show that interfering with the interaction of PED/PEA-15 with PLD1 in L6 skeletal muscle cells overexpressing PED/PEA-15 (L6(PED/PEA-15)) restores insulin sensitivity. Surface plasmon resonance and ELISA-like assays show that PED/PEA-15 binds in vitro the D4 domain with high affinity (K(D) = 0.37 +/- 0.13 mum), and a PED/PEA-15 peptide, spanning residues 1-24, PED-(1-24), is able to compete with the PED/PEA-15-D4 recognition. When loaded into L6(PED/PEA-15) cells and in myocytes derived from PED/PEA-15-overexpressing transgenic mice, PED-(1-24) abrogates the PED/PEA-15-PLD1 interaction and reduces protein kinase C-alpha activity to levels similar to controls. Importantly, the peptide restores insulin-stimulated glucose uptake by approximately 70%. Similar results are obtained by expression of D4 in L6(PED/PEA-15). All these findings suggest that disruption of the PED/PEA-15-PLD1 molecular interaction enhances insulin sensitivity in skeletal muscle cells and indicate that PED/PEA-15 as an important target for type 2 diabetes.

Country
Italy
Keywords

EXPRESSION, Protein Kinase C-alpha, Genetic Vectors, Mice, Transgenic, Biochemistry, ASTROCYTES, Models, Biological, Mice, Phospholipase D, Animals, PROTEIN-KINASE-C, PHOSPHORYLATION, Muscle, Skeletal, Molecular Biology, Aurora Universities Network, DEATH, GLUCOSE-METABOLISM, Biological Transport, Cell Biology, PEA-15, Phosphoproteins, GENE, PROTEIN-KINASE-C; GLUCOSE-METABOLISM; PEA-15; EXPRESSION; PHOSPHORYLATION; ASTROCYTES; APOPTOSIS; DEATH; GENE; SECRETION, APOPTOSIS, Rats, Glucose, Astrocytes, SECRETION, Apoptosis Regulatory Proteins, Peptides, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Green
gold