Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Molecular cloning and expression of a cDNA encoding an olfactory-specific mouse phenol sulphotransferase

Authors: Yuki Harada; Atsushi Miyawaki; Michio Matsui; Katsuhiko Mikoshiba; Hiroomi Tamura;

Molecular cloning and expression of a cDNA encoding an olfactory-specific mouse phenol sulphotransferase

Abstract

Previously we demonstrated the presence of phenol sulphotransferase (P-ST) in mouse nasal cytosols and identified its zonal location in mouse nasal cavity by staining with an antiserum raised against a rat liver P-ST isoenzyme, PSTg. In the present study a cDNA was isolated from a mouse olfactory cDNA library by immunological screening with the antiserum. The isolated cDNA consisted of 1347 bp with a 912 bp open reading frame encoding a 304-residue polypeptide. Both the nucleotide and deduced amino acid sequences of the cDNA were 94% identical with those of a rat liver P-ST isoenzyme, ST1C1. The expressed enzyme in Escherichia coli displayed high P-ST activity towards phenolic odorants such as eugenol and guaiacol, and it showed a high N-hydroxy-2-acetylaminofluorene sulphation activity in comparison with the rat ST1C1 enzyme. These results indicate that the olfactory P-ST encoded by the cDNA is a mouse orthologue of rat ST1C1; however, expression of the olfactory P-ST mRNA is specific for nasal tissues as revealed by reverse transcriptase-mediated PCR (RT–PCR).

Related Organizations
Keywords

Base Sequence, Sequence Homology, Amino Acid, Guaiacol, Molecular Sequence Data, Hydroxyacetylaminofluorene, Sequence Analysis, DNA, Arylsulfotransferase, Recombinant Proteins, Substrate Specificity, Kinetics, Mice, Nasal Mucosa, Eugenol, Escherichia coli, Animals, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Sequence Alignment, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Average
bronze