Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Selective decrease of mRNAs encoding plasma membrane calcium pump isoforms 2 and 3 in rat kidney

Authors: Caride, Ariel J.; Chini, Eduardo N.; Penniston, John T.; Dousa, Thomas P.;

Selective decrease of mRNAs encoding plasma membrane calcium pump isoforms 2 and 3 in rat kidney

Abstract

Although the existence of multiple isoforms of plasma membrane calcium ATPase (PMCA) is now well documented, their biological functions are not yet known. In this study, we set out to investigate the potential role of PMCA isoforms, previously identified in renal cortical tissue, in tubular reabsorption of calcium (Ca2+).With use of reverse transcription-polymerase chain reaction analysis, we determined levels of mRNAs encoding isoforms of PMCA1 through PMCA4 in renal cortex, liver, and brain of rats with hypercalciuria induced by feeding with a low-phosphate diet (LPD) as compared with Ca2+-retaining rats that were fed a high-phosphate diet (HPD).We observed that in hypercalciuric LPD-fed rats, the mRNAs encoding isoforms PMCA2b and PMCA3(a + c) are significantly lower (Delta approximately-50%) than in HPD-fed hypocalciuric rats, whereas no changes in mRNAs encoding isoforms PMCA1b and PMCA4 were observed, and mRNA encoding calbindin 28 kDa was increased. On the other hand, the content of mRNAs encoding PMCA2b and PMCA3(a + c) in liver and brain, respectively, was not changed.These findings are evidence that expression of PMCA isoforms in the kidney can be selectively modulated in response to pathophysiologic stimuli. The association of a decrease in mRNA encoding PMCA2b and PMCA3(a + c) with hypercalciuria suggests that the two PMCA isoforms may be operant in tubular reabsorption of Ca2+ and its regulation.

Related Organizations
Keywords

Male, Calbindins, Cell Membrane, Calcium-Transporting ATPases, plasma membrane, Kidney, transepithelial Ca transport, Phosphates, Rats, Isoenzymes, Rats, Sprague-Dawley, Kidney Tubules, S100 Calcium Binding Protein G, PMCA, Nephrology, kidney ATPase, Animals, Calcium, RNA, Messenger, hypercalciuria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Average
hybrid