Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Investigative Ophthalmology & Visual Science
Article . 2010 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

RGS7 and -11 Complexes Accelerate the ON-Bipolar Cell Light Response

Authors: Jianmei, Zhang; Brett G, Jeffrey; Catherine W, Morgans; Neal S, Burke; Tammie L, Haley; Robert M, Duvoisin; R Lane, Brown;

RGS7 and -11 Complexes Accelerate the ON-Bipolar Cell Light Response

Abstract

The retinal ON-bipolar cell (ON-BPC) light response is initiated upon deactivation of the metabotropic glutamate receptor mGluR6 and the G protein Go. G protein-based signaling cascades are typically accelerated by interaction of the G protein alpha subunit with a member of the regulator of G protein signaling (RGS) protein family. The goal of this study was to determine whether RGS7 and/or -11 serve this function in retinal ON-BPCs.Retinas from mice lacking RGS11 (RGS11(-/-)), or with a deletion mutation in RGS7 (RGS7(Delta/Delta)), or both, were compared to wild-type (WT) by immunofluorescence confocal microscopy. The retinal light response was measured with the electroretinogram (ERG). The kinetics of simulated light responses from individual rod bipolar cells were recorded by whole-cell patch-clamp electrophysiology.Levels of the R7 RGS interaction partners, Gbeta5 and R9AP, were reduced in the outer plexiform layer of the RGS11(-/-) and RGS7(Delta/Delta)/RGS11(-/-) mice. ERG recordings demonstrated a delay in the rising phase of the ERG b-wave, larger photopic b-wave amplitudes, and increased scotopic threshold response sensitivity in the RGS11(-/-) and RGS7(Delta/Delta)/RGS11(-/-) mice. The ERG measured from the RGS7(Delta/Delta) retina was normal. Patch-clamp recordings of chemically simulated light responses of rod BPCs revealed a 25-ms delay in the onset of the ON-BPC response in the RGS7(Delta/Delta)/RGS11(-/-) mouse compared with the WT.RGS11 plays a role in the deactivation of Galphao, which precedes activation of the depolarizing current in ON-BPCs. RGS7 must also serve a role as changes in RGS7(Delta/Delta)/RGS11(-/-) mice were greater than those in RGS11(-/-) mice.

Keywords

Mice, Knockout, Retinal Bipolar Cells, Microscopy, Confocal, Patch-Clamp Techniques, Genotype, Light, Hydrolysis, Blotting, Western, Receptors, Metabotropic Glutamate, Immunohistochemistry, Electrophysiology, Mice, Inbred C57BL, Mice, Electroretinography, Animals, Guanosine Triphosphate, Photic Stimulation, RGS Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
gold