Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 1999 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions

Characterization of an NGF–P-TrkA Retrograde-Signaling Complex and Age-Dependent Regulation of TrkA Phosphorylation in Sympathetic Neurons

Authors: Brian A. Tsui-Pierchala; David D. Ginty;

Characterization of an NGF–P-TrkA Retrograde-Signaling Complex and Age-Dependent Regulation of TrkA Phosphorylation in Sympathetic Neurons

Abstract

Nerve growth factor (NGF) is a target-derived trophic factor for developing sympathetic and cutaneous sensory neurons. NGF promotes growth and survival of neurons via activation of the receptor tyrosine kinase TrkA. We used compartmentalized cultures of sympathetic neurons to address the mechanism of NGF signaling from distal axons and terminals to proximal axons and cell bodies. Our results demonstrate that an NGF–phospho-TrkA (NGF–P-TrkA)–signaling complex forms in distal axons and is retrogradely transported as a complex to cell bodies of sympathetic neurons. Although a minor fraction of both NGF and TrkA is retrogradely transported, a large fraction of the NGF that is retrogradely transported is found complexed with retrogradely transported TrkA. Interestingly, the metabolism of the P-TrkA complex is dramatically different in young, NGF-dependent sympathetic neurons as compared to older, NGF-independent sympathetic neurons. After withdrawal of NGF from distal axons of young neurons, P-TrkA within distal axons, as well as within proximal axons and cell bodies, dephosphorylates rapidly. In contrast, after withdrawal of NGF from distal axons of older neurons, P-TrkA within distal axons dephosphorylates completely, although more slowly than that in young neurons, whereas dephosphorylation of P-TrkA within proximal axons and cell bodies occurs markedly more slowly, with at least one-half of the level of P-TrkA remaining 2 d after NGF withdrawal. Thus, P-TrkA within the cell bodies of young, NGF-dependent sympathetic neurons is derived from distal axons. A more stable P-TrkA complex within cell bodies of mature sympathetic neurons may contribute to the acquisition of NGF independence for survival of mature sympathetic neurons.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 10%
Top 10%
Top 10%
hybrid