Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Stero...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Steroid Biochemistry and Molecular Biology
Article . 1995 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Cloning, sequencing and tissue-distribution of mouse 11β-hydroxysteroid dehydrogenase-1 cDNA

Authors: Val Lyons; John J. Mullins; Karen E. Chapman; Vidya Rajan; Jonathan R. Seckl; Christopher R. W. Edwards; Pauline M. Jamieson;

Cloning, sequencing and tissue-distribution of mouse 11β-hydroxysteroid dehydrogenase-1 cDNA

Abstract

11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) reversibly converts physiological glucocorticoids (cortisol, corticosterone) to inactive 11-dehydro forms, and thus controls glucocorticoid access to receptors in a variety of tissues. We have cloned a cDNA encoding 'liver-type' 11 beta-HSD (11 beta-HSD1) from the mouse using PCR, and have determined its nucleotide sequence. Mouse 11 beta-HSD1 cDNA showed 91% identity to rat 11 beta-HSD1 cDNA. There was 87% amino acid identity with rat 11 beta-HSD1 with conservation of the putative cofactor and substrate binding domains. Northern blot analysis of mouse tissues demonstrated abundant 11 beta-HSD1 message in the liver, kidney and lung, with lower expression in brain subregions and gonads. 11 beta-HSD1 mRNA was below the level of detection in the murine colon. 11 beta-HSD1 mRNA levels in kidney was higher in males than in females, but in contrast to the rat, there was no sexual dimorphism in the mouse liver. Although males and females showed different mRNA levels in the kidney, there was no sex difference in 11 beta-HSD enzyme activity. Thus, despite the high inter-species conservation of 11 beta-HSD1, there are clear species and tissue-specific differences in its expression.

Keywords

Male, DNA, Complementary, Base Sequence, Molecular Sequence Data, Hydroxysteroid Dehydrogenases, Sequence Analysis, DNA, Kidney, Gene Expression Regulation, Enzymologic, Rats, Mice, Inbred C57BL, Mice, Liver, Organ Specificity, Mice, Inbred CBA, Animals, 11-beta-Hydroxysteroid Dehydrogenases, Female, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Average
Top 10%
Top 10%