Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Perip...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Peripheral Nervous System
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

The coordinate regulation of sensory afferent CNS targeting and CNS longitudinal tract organization in Drosophila during neural development

Authors: Zhuhao, Wu; Benjamin J, Andreone; Alex L, Kolodkin;

The coordinate regulation of sensory afferent CNS targeting and CNS longitudinal tract organization in Drosophila during neural development

Abstract

AbstractLongitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior‐posterior axis. We find that the establishment of CNS longitudinal tracts, and the formation of precise chordotonal mechanosensory afferent innervation to the same CNS region, are coordinately regulated by the secreted semaphorins Sema‐2a and Sema‐2b. Both Sema‐2a and Sema‐2b utilize the same neuronal receptor, plexin B (PlexB), but they serve repulsive and attractive functions, respectively, to promote interneuron fascicle assembly and sensory afferent connectivity. In the absence of Sema‐2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, as are select interneuron pathways within longitudinal fascicles, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin‐mediated guidance functions converge at the PlexB receptor, and that attractive and repulsive functions mediated by this receptor are critical for functional neural circuit assembly.

Keywords

Central Nervous System, Sensory Receptor Cells, Neurogenesis, Animals, Drosophila Proteins, Drosophila, Semaphorins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze