Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cells Tissues Organsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cells Tissues Organs
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Inducible Mouse Models for Inherited Skin Diseases: Implications for Skin Gene Therapy

Authors: Meral J, Arin; Dennis R, Roop;

Inducible Mouse Models for Inherited Skin Diseases: Implications for Skin Gene Therapy

Abstract

Stem cells are crucial for the formation and maintenance of tissues and organs. To understand the role of stem cells in the pathogenesis of mosaic skin disorders, we generated inducible mouse models for two autosomal dominant keratin disorders, epidermolytic hyperkeratosis (EHK) and epidermolysis bullosa simplex (EBS), that enable activation of the respective mutation in epidermal stem cells in a spatially and temporally controlled manner using a ligand-inducible Cre recombinase. Whereas mosaic forms have been reported for EHK, which is caused by mutations in the suprabasal keratins K1 or K10, this has never been reported for EBS, which is due to mutations in the basal keratins K5 or K14. When we induced the phenotype in these models by topical application of the inducer, we found phenotypic areas in the EHK model that persisted for the life of the mouse. On the contrary, the induced blisters in the EBS model healed within a few weeks by migration of surrounding non-phenotypic stem cells into the wound bed. Our results indicate that lack of selective pressure against certain mutations in epidermal stem cells could explain why mosaic forms exist for EHK, but not for EBS. These findings have important implications for the development of new strategies for somatic gene therapy of dominant genodermatoses, and we are currently using these inducible mouse models to test gene therapy approaches.

Related Organizations
Keywords

Hyperkeratosis, Epidermolytic, Integrases, Mosaicism, Stem Cells, Skin Diseases, Genetic, Mice, Transgenic, Genetic Therapy, Mice, Mutant Strains, Mice, Inbred C57BL, Disease Models, Animal, Mice, Phenotype, Epidermolysis Bullosa Simplex, Animals, Humans, Keratins, Epidermis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%