MicroRNAs Regulate Pituitary Development, and MicroRNA 26b Specifically Targets Lymphoid Enhancer Factor 1 (Lef-1), Which Modulates Pituitary Transcription Factor 1 (Pit-1) Expression
MicroRNAs Regulate Pituitary Development, and MicroRNA 26b Specifically Targets Lymphoid Enhancer Factor 1 (Lef-1), Which Modulates Pituitary Transcription Factor 1 (Pit-1) Expression
To understand the role of microRNAs (miRNAs) in pituitary development, a group of pituitary-specific miRNAs were identified, and Dicer1 was then conditionally knocked out using the Pitx2-Cre mouse, resulting in the loss of mature miRNAs in the anterior pituitary. The Pitx2-Cre/Dicer1 mutant mice demonstrate growth retardation, and the pituitaries are hypoplastic with an abnormal branching of the anterior lobe, revealing a role for microRNAs in pituitary development. Growth hormone, prolactin, and thyroid-stimulating hormone β-subunit expression were decreased in the Dicer1 mutant mouse, whereas proopiomelanocortin and luteinizing hormone β-subunit expression were normal in the mutant pituitary. Further analyses revealed decreased Pit-1 and increased Lef-1 expression in the mutant mouse pituitary, consistent with the repression of the Pit-1 promoter by Lef-1. Lef-1 directly targets and represses the Pit-1 promoter. miRNA-26b (miR-26b) was identified as targeting Lef-1 expression, and miR-26b represses Lef-1 in pituitary and non-pituitary cell lines. Furthermore, miR-26b up-regulates Pit-1 and growth hormone expression by attenuating Lef-1 expression in GH3 cells. This study demonstrates that microRNAs are critical for anterior pituitary development and that miR-26b regulates Pit-1 expression by inhibiting Lef-1 expression and may promote Pit-1 lineage differentiation during pituitary development.
- The University of Texas System United States
- Texas A&M University United States
- The University of Texas Health Science Center at Houston United States
- University of Colorado Denver United States
Homeodomain Proteins, Ribonuclease III, Pro-Opiomelanocortin, Lymphoid Enhancer-Binding Factor 1, Gene Expression Regulation, Developmental, Cell Differentiation, Mice, Transgenic, Luteinizing Hormone, beta Subunit, Mice, Mutant Strains, Cell Line, Prolactin, DEAD-box RNA Helicases, Mice, MicroRNAs, Pituitary Gland, Anterior, Endoribonucleases, Animals, Cell Lineage, Promoter Regions, Genetic, Growth Disorders
Homeodomain Proteins, Ribonuclease III, Pro-Opiomelanocortin, Lymphoid Enhancer-Binding Factor 1, Gene Expression Regulation, Developmental, Cell Differentiation, Mice, Transgenic, Luteinizing Hormone, beta Subunit, Mice, Mutant Strains, Cell Line, Prolactin, DEAD-box RNA Helicases, Mice, MicroRNAs, Pituitary Gland, Anterior, Endoribonucleases, Animals, Cell Lineage, Promoter Regions, Genetic, Growth Disorders
40 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).85 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
