Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Myosin Vb Interacts with Rab8a on a Tubular Network Containing EHD1 and EHD3

Authors: Joseph T, Roland; Anne K, Kenworthy; Johan, Peranen; Steve, Caplan; James R, Goldenring;

Myosin Vb Interacts with Rab8a on a Tubular Network Containing EHD1 and EHD3

Abstract

Cells use multiple pathways to internalize and recycle cell surface components. Although Rab11a and Myosin Vb are involved in the recycling of proteins internalized by clathrin-mediated endocytosis, Rab8a has been implicated in nonclathrin-dependent endocytosis and recycling. By yeast two-hybrid assays, we have now demonstrated that Myosin Vb can interact with Rab8a, but not Rab8b. We have confirmed the interaction of Myosin Vb with Rab11a and Rab8a in vivo by using fluorescent resonant energy transfer techniques. Rab8a and Myosin Vb colocalize to a tubular network containing EHD1 and EHD3, which does not contain Rab11a. Myosin Vb tail can cause the accumulation of both Rab11a and Rab8a in collapsed membrane cisternae, whereas dominant-negative Rab11-FIP2(129-512) selectively accumulates Rab11a but not Rab8a. Additionally, dynamic live cell imaging demonstrates distinct pathways for Rab11a and Rab8a vesicle trafficking. These findings indicate that Rab8a and Rab11a define different recycling pathways that both use Myosin Vb.

Keywords

Histocompatibility Antigens Class I, Myosin Type V, Vesicular Transport Proteins, Protein Transport, rab GTP-Binding Proteins, Two-Hybrid System Techniques, Fluorescence Resonance Energy Transfer, Animals, Humans, Rabbits, Carrier Proteins, Transport Vesicles, Chickens, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 10%
Top 10%
Top 1%
bronze