Gene Expression Patterns of Murine Dentin Matrix Protein 1 (Dmp1) and Dentin Sialophosphoprotein (DSPP) Suggest Distinct Developmental Functions In Vivo
pmid: 9421236
Gene Expression Patterns of Murine Dentin Matrix Protein 1 (Dmp1) and Dentin Sialophosphoprotein (DSPP) Suggest Distinct Developmental Functions In Vivo
Abstract Although the precise mechanisms of the conversion of predentin to dentin are not well understood, several lines of evidence implicate the noncollagenous proteins (NCPs) as important regulators of dentin biomineralization. Here we compared the in vivo temporospatial expression patterns of two dentin NCP genes, dentin matrix protein 1 (Dmp1), and dentin sialophosphoprotein (DSPP) in developing molars. Reverse transcription-polymerase chain reaction was performed on embryonic day 13 to 1-day-old first molars using Dmp1- and DSPP-specific primer sets. Dmp1 transcripts appeared at the late bud stage, while DSPP mRNA was seen at the cap stage. Expression of both genes was sustained throughout odontogenesis. In situ hybridization analysis revealed interesting differences in the expression patterns of these genes. While Dmp1 and DSPP showed coexpression in young odontoblasts before the start of mineralization, the expression of these genes was notably distinct at later stages. Dmp1 expression decreased in secretory odontoblasts after the appearance of mineral, while high levels of DSPP were sustained in odontoblasts. In early secretory ameloblasts, DSPP expression was transient and down-regulated with the appearance of dentin matrix. Interestingly, Dmp1 expression became evident in ameloblasts during the maturative phase of amelogenesis. In contrast to Dspp expression that was tooth-specific, Dmp1 was expressed by osteoblasts throughout ossification in the skeleton. Probes directed to the “DSP” and “DPP” regions of the DSPP gene showed identical patterns of mRNA expression. These data show that the developmental expression patterns of Dmp1 and DSPP are distinct, implying that these molecules serve different biological functions in vivo.
- National Institutes of Health United States
- National Institute of Health Pakistan
- The University of Texas Health Science Center at Houston United States
- The University of Texas Health Science Center at San Antonio United States
Extracellular Matrix Proteins, Minerals, Time Factors, Gene Expression, Gene Expression Regulation, Developmental, RNA Probes, Phosphoproteins, Polymerase Chain Reaction, Pulmonary Alveoli, Mice, Osteogenesis, Animals, Odontogenesis, RNA, In Situ Hybridization
Extracellular Matrix Proteins, Minerals, Time Factors, Gene Expression, Gene Expression Regulation, Developmental, RNA Probes, Phosphoproteins, Polymerase Chain Reaction, Pulmonary Alveoli, Mice, Osteogenesis, Animals, Odontogenesis, RNA, In Situ Hybridization
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).328 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
