Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 1998 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Presynaptic Calcium/Calmodulin-Dependent Protein Kinase II Regulates Habituation of a Simple Reflex in AdultDrosophila

Authors: P, Jin; L C, Griffith; R K, Murphey;

Presynaptic Calcium/Calmodulin-Dependent Protein Kinase II Regulates Habituation of a Simple Reflex in AdultDrosophila

Abstract

On repetitive stimulation, the strength of a reflex controlling leg position inDrosophiladecreased, and this response decrement conformed to the parametric features of habituation. To study the presynaptic function of CaMKII in this nonassociative form of learning, we used a P[Gal4] insertion line to target the expression of mutant forms of CaMKII to the sensory neurons controlling the reflex. Targeted expression of a calcium-independent CaMKII construct (T287D) in the sensory neurons eliminated habituation. Targeted expression of a mutant CaMKII incapable of achieving calcium independence (T287A) reduced the initial reflex response, but a strong facilitation then occurred, and this eliminated most of the habituation. Finally, when a CaMKII inhibitory peptide (ala) was expressed in sensory neurons, the initial response was reduced, followed by facilitation. These results suggest that basal CaMKII levels in the presynaptic neurons set the response level and dynamics of the entire neural circuit.

Keywords

Electromyography, Presynaptic Terminals, Gene Expression, Axons, Mutagenesis, Calcium-Calmodulin-Dependent Protein Kinases, Neural Pathways, Reflex, Animals, Drosophila, Neurons, Afferent, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Habituation, Psychophysiologic, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Average
Top 10%
Top 10%
hybrid