Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MGG Molecular & Gene...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MGG Molecular & General Genetics
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

The Cdk-like protein PCTAIRE-1 from mouse brain associates with p11 and 14-3-3 proteins

Authors: F, Sladeczek; J H, Camonis; A F, Burnol; F, Le Bouffant;

The Cdk-like protein PCTAIRE-1 from mouse brain associates with p11 and 14-3-3 proteins

Abstract

PCTAIRE-1 is a member of the cyclin-dependent kinase (cdk)-like class of proteins, and is localized mainly in the mammalian brain. Using the yeast two-hybrid system we screened a mouse brain cDNA library with PCTAIRE-1 as bait, and isolated several clones coding for the mouse homologs of the following proteins: p11 (also known as calpactin I light chain) and the eta, theta (also known as tau) and zeta isoforms of 14-3-3 proteins. We confirmed that these four proteins interact with PCTAIRE-1 by demonstrating the biochemical interactions using the pure recombinant proteins. The fact that 14-3-3 proteins are known to interact with many other intracellular proteins (such as C-kinase, Raf, Bcr, P13-kinase) and p11 with annexin II (a major pp60(v-src) and C-kinase substrate) suggests that PCTAIRE-1 might be part of multiple signal transduction cascades and cellular protein networks.

Keywords

Base Sequence, Tyrosine 3-Monooxygenase, Recombinant Fusion Proteins, Molecular Sequence Data, Brain, Proteins, Saccharomyces cerevisiae, Protein Serine-Threonine Kinases, Cyclin-Dependent Kinases, Molecular Weight, Mice, 14-3-3 Proteins, Animals, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Annexin A2, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%