Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Phosphorylation of αB-crystallin in Mitotic Cells and Identification of Enzymatic Activities Responsible for Phosphorylation

Authors: Ikuko Iwamoto; Kanefusa Kato; Yutaka Inaguma; Shinsuke Saga; Hidenori Ito; Keiko Kamei;

Phosphorylation of αB-crystallin in Mitotic Cells and Identification of Enzymatic Activities Responsible for Phosphorylation

Abstract

The immunofluorescence localization of alphaB-crystallin in U373 MG human glioma cells with an antibody specific for alphaB-crystallin that had been phosphorylated at Ser-45 revealed an intense staining of cells in the mitotic phase of the cell cycle. Phosphorylated forms of alphaB-crystallin in mitotic cells were detected in all cell lines examined and in tissue sections of mouse embryos. Increases in the levels of alphaB-crystallin that had been phosphorylated at Ser-45 and Ser-19, but not at Ser-59, were detected biochemically by isoelectric focusing or SDS-polyacrylamide gel electrophoresis and a subsequent Western blot analysis of extracts of cells collected at the mitotic phase. When we estimated the phosphorylation activity specific for alphaB-crystallin in extracts of mitotic U373 MG cells, using the amino-terminal 72-amino acid peptide derived from unphosphorylated alphaB2-crystallin as the substrate, we found that the activities responsible for the phosphorylation of Ser-45 and Ser-19 were markedly enhanced but that the activity responsible for the phosphorylation of Ser-59 was suppressed. The protein kinases responsible for the phosphorylation of Ser-45 and Ser-59 in the amino-terminal 72-amino acid peptide were partially purified from extracts of cells that had been stimulated by exposure to H2O2 in the presence of calyculin A. The activities responsible for the phosphorylation of Ser-45 and Ser-59 were eluted separately from a column of Superdex 200 at fractions corresponding to about 40 and 60 kDa, respectively, while the kinase for Ser-19 was unstable. p44/42 mitogen-activated protein (MAP) kinase and MAP kinase-activated protein (MAPKAP) kinase-2 were concentrated in the Ser-45 kinase fraction and Ser-59 kinase fraction, respectively. Recombinant human p44 MAP kinase and MAPKAP kinase-2 purified from rabbit muscle selectively phosphorylated Ser-45 and -59, respectively. The Ser-45 kinase fraction and Ser-59 kinase fraction phosphorylated myelin basic protein and hsp27, respectively. These results suggest that the phosphorylations of Ser-45 and Ser-59 in alphaB-crystallin are catalyzed by p44/42 MAP kinase and MAPKAP kinase-2, respectively, in cells and that the phosphorylation of Ser-45 by p44/42 MAP kinase is enhanced while the phosphorylation of Ser-59 by MAPKAP kinase-2 is suppressed during cell division.

Keywords

Mitogen-Activated Protein Kinase 1, Intracellular Signaling Peptides and Proteins, Mitosis, Protein Serine-Threonine Kinases, Phosphoproteins, Crystallins, Peptide Fragments, Cell Compartmentation, Substrate Specificity, Mice, Serine, Tumor Cells, Cultured, Animals, Humans, Rabbits, Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 10%
Top 10%
Top 10%
gold