Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in G...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Genetics & Development
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo

Authors: J, Rusch; M, Levine;

Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo

Abstract

Dorsoventral patterning in Drosophila is initiated by the maternal regulatory factor dorsal (dl), which is a member of the Rel family of transcription factors. dl functions as a transcriptional activator and repressor to establish different territories of gene expression in the precellular embryo. Differential regulation of dl target genes may be essential for subdividing each tissue territory (the presumptive mesoderm, neuroectoderm, and dorsal ectoderm) into multiple cell types in older embryos. Different patterns of snail (sna) and decapentaplegic (dpp) expression help define the limits of inductive interactions between the mesoderm and dorsal ectoderm after gastrulation. Similarly, the differential regulation of short gastrulation (sog) and dpp may be decisive in the initial subdivision of the dorsal ectoderm, whereas different limits of gene expression within the neuroectoderm might provide the basis for the subsequent subdivision of this tissue into ventral and lateral regions.

Keywords

Mesoderm, Ectoderm, Animals, Drosophila Proteins, Nuclear Proteins, Drosophila, Phosphoproteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    128
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
128
Top 10%
Top 10%
Top 10%