Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Arginine/Lysine-rich Nuclear Localization Signals Mediate Interactions between Dimeric STATs and Importin α5

Authors: Riku Fagerlund; Ilkka Julkunen; Leena Kinnunen; Krister Melén;

Arginine/Lysine-rich Nuclear Localization Signals Mediate Interactions between Dimeric STATs and Importin α5

Abstract

Interferon stimulation results in tyrosine phosphorylation, dimerization, and nuclear import of STATs (signal transducers and activators of transcription). Proteins to be targeted into the nucleus usually contain nuclear localization signals (NLSs), which interact with importin alpha. Importin alpha binds to importin beta, which docks the protein complex to nuclear pores, and the complex translocates into the nucleus. Here we show that baculovirus-produced and -activated STAT1 homodimers and STAT1-STAT2 heterodimers directly interacted with importin alpha 5 (NPI-1). This interaction was very stable and was dependent on lysines 410 and 413 of STAT1. Only STAT dimers that had two intact NLS elements, one in each monomer, were able to bind to importin alpha 5. STAT-importin alpha 5 complexes apparently consisted of two STAT and two importin alpha molecules. STAT NLS-dependent colocalization of importin alpha 5 with STAT1 or STAT2 was seen in the nucleus of transfected cells. gamma-Activated sequence DNA elements efficiently inhibited STAT binding to importin alpha 5 suggesting that the DNA and importin alpha binding sites are close to each other in STAT dimers. Our results demonstrate that specific NLSs in STATs mediate direct interactions of STAT dimers with importin alpha, which activates the nuclear import process.

Keywords

alpha Karyopherins, Base Sequence, Lysine, Nuclear Localization Signals, STAT2 Transcription Factor, Spodoptera, Arginine, Cell Line, DNA-Binding Proteins, STAT1 Transcription Factor, Chromatography, Gel, Trans-Activators, Animals, Humans, Tyrosine, Phosphorylation, Baculoviridae, Dimerization, DNA Primers, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    155
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
155
Top 10%
Top 10%
Top 1%
gold