Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Neuroscience
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Role of PDGF-A-Activated ERK Signaling Mediated FAK-Paxillin Interaction in Oligodendrocyte Progenitor Cell Migration

Authors: Juhi Singh; Kedarlal Sharma; Emma E. Frost; Prakash P. Pillai;

Role of PDGF-A-Activated ERK Signaling Mediated FAK-Paxillin Interaction in Oligodendrocyte Progenitor Cell Migration

Abstract

Oligodendrocyte progenitor cells (OPCs) originate from the sub-ventricular zone of the developing brain. They migrate and proliferate to occupy the white matter tracts of the central nervous system and transform into myelinating oligodendrocytes. Along their route of migration, OPCs are guided and controlled by several growth factors and chemokines. PDGF-A (platelet-derived growth factor), a growth factor, serves as a monogenic and mitogenic cue during the process and activates intracellular signaling pathways inside the cell. Activation of extracellular signal regulated kinase (ERK) signaling is one of the mechanisms by which PDGF-A induces the migration of OPCs. However, the mechanisms governing the PDGF-A-induced ERK-driven OPCs migration are still unclear. In the current study, we investigated further the role of PDGF-A-induced ERK signaling in OPC migration. First, we confirmed the role of PDGF-A-activated ERK signaling in OPC migration using the pharmacological inhibitor U0126, or siRNA-mediated suppression of ERK expression. Then, we demonstrated that PDGF-A-induced actin reorganization and interaction of focal adhesion kinase (FAK), Paxillin, and pERK signals are impaired in OPCs treated with the MEK inhibitor U0126. Thus, our findings demonstrated that PDGF-A induces OPC migration in an ERK-dependent mechanism via regulation of actin reorganization and FAK-Paxillin interaction.

Keywords

Mitogen-Activated Protein Kinase 1, Platelet-Derived Growth Factor, Mitogen-Activated Protein Kinase 3, MAP Kinase Signaling System, Rats, Oligodendroglia, Neural Stem Cells, Cell Movement, Focal Adhesion Protein-Tyrosine Kinases, Animals, Paxillin, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Average
Top 10%