Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes inDrosophila melanogaster
doi: 10.1242/jcs.00332
pmid: 12584246
Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes inDrosophila melanogaster
The regulatory complex of the 26S proteasome is responsible for the selective recognition and binding of multiubiquitinated proteins. It was earlier shown that the subunit S5a/Rpn10/p54 of the regulatory complex is the only cellular protein capable of binding multiubiquitin chains in an in vitro overlay assay. The role of this subunit in substrate selection, however, is a subject of debate, following the observation that its deletion in Saccharomyces cerevisiae is not lethal and instead causes only a mild phenotype. To study the function of this subunit in higher eukaryotes, a mutant Drosophila strain was constructed by deleting the single copy gene encoding subunit S5a/Rpn10/p54. This deletion caused larval-pupal polyphasic lethality, multiple mitotic defects, the accumulation of higher multimers of ubiquitinated proteins and a huge accumulation of defective 26S proteasome particles. Deletion of the subunit S5a/Rpn10/p54 does not destabilise the regulatory complex and does not disturb the assembly of the regulatory complex and the catalytic core. The pupal lethality is a consequence of the depletion of the maternally provided 26S proteasome during the larval stages and a sudden increase in the proteasomal activity demands during the first few hours of pupal development. The huge accumulation of the fully assembled 26S proteasome in the deletion mutant and the lack of free subunits or partially assembled particles indicate that there is a highly coordinated accumulation of all the subunits of the 26S proteasome. This suggests that in higher eukaryotes, as with yeast, a feedback circuit coordinately regulates the expression of the proteasomal genes, and this adjusts the actual proteasome concentration in the cells according to the temporal and/or spatial proteolytic demands.
Male, Proteasome Endopeptidase Complex, Saccharomyces cerevisiae Proteins, Ubiquitin, Pupa, Gene Expression Regulation, Developmental, Mitosis, Drosophila melanogaster, Phenotype, Mutagenesis, Larva, Animals, Drosophila Proteins, Female, Genes, Lethal, Carrier Proteins, QR180 Immunology / immunológia, Gene Deletion, Peptide Hydrolases
Male, Proteasome Endopeptidase Complex, Saccharomyces cerevisiae Proteins, Ubiquitin, Pupa, Gene Expression Regulation, Developmental, Mitosis, Drosophila melanogaster, Phenotype, Mutagenesis, Larva, Animals, Drosophila Proteins, Female, Genes, Lethal, Carrier Proteins, QR180 Immunology / immunológia, Gene Deletion, Peptide Hydrolases
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
