Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncology Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncology Reports
Article
Data sources: UnpayWall
Oncology Reports
Article . 2015 . Peer-reviewed
Data sources: Crossref
Oncology Reports
Article . 2016
versions View all 2 versions

Eukaryotic initiation factor 3C silencing inhibits cell proliferation and promotes apoptosis in human glioma

Authors: Jinmin, Hao; Zhiming, Wang; Yaowu, Wang; Zhaohui, Liang; Xin, Zhang; Zongmao, Zhao; Baohua, Jiao;

Eukaryotic initiation factor 3C silencing inhibits cell proliferation and promotes apoptosis in human glioma

Abstract

Eukaryotic initiation factor 3, subunit c (eIF3c), an oncogene overexpressed in human cancers, plays an important role in cell tumorigenesis and proliferation. However, studies assessing its function in gliomas are scarce. The present study evaluated for the first time, the role of eIF3c in gliomas. Immunohistochemistry was carried out to assess eIF3c expression in 95 human glioma samples and normal brain tissues. Then, the eIF3c mRNA levels were detected in tumor and normal brain specimens by quantitative RT-PCR. In addition, eIF3c mRNA levels were assessed in four glioma cell lines (U87, U251, A172 and U373) by semi-quantitative RT-PCR. The RNA interference (RNAi) technology was employed to knock down the eIF3c gene in the U251 cells. Western blot analysis, BrdU assay and flow cytometry were used to measure eIF3c protein levels, cell proliferation, cell apoptosis and cell cycle, respectively. The eIF3c protein was overexpressed in the human glioma specimens. In agreement, the eIF3c mRNA expression levels were significantly higher in the human glioma tissues compared with the normal brain samples (P<0.0001). In addition, eIF3c mRNA was detected in all the glioma cell lines. Silencing the eIF3c gene in the U251 cells by RNAi significantly suppressed cell proliferation (P<0.01) and increased apoptosis (P<0.01). Finally, a stark decrease was observed in the G1 phase cell number (P<0.01), while the S and G2 phase cells were significantly increased (P<0.01) after eIF3c knockdown. These findings suggest that eIF3c is overexpressed in human gliomas and essential for their proliferation and survival. Therefore, inhibiting eIF3c expression may constitute an effective therapy for human glioma.

Related Organizations
Keywords

Adult, Male, Adolescent, Brain Neoplasms, Carcinogenesis, Eukaryotic Initiation Factor-3, Apoptosis, Glioma, Middle Aged, Disease-Free Survival, Gene Expression Regulation, Neoplastic, Humans, Female, RNA, Messenger, Aged, Cell Proliferation, Neoplasm Staging

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
bronze
Related to Research communities
Cancer Research