Powered by OpenAIRE graph

Rho family GTPases

Authors: Alan, Hall;
Abstract

Rho GTPases comprise a family of molecular switches that control signal transduction pathways in eukaryotic cells. A conformational change induced upon binding GTP promotes an interaction with target (effector) proteins to generate a cellular response. A highly conserved function of Rho GTPases from yeast to humans is to control the actin cytoskeleton, although, in addition, they promote a wide range of other cellular activities. Changes in the actin cytoskeleton drive many dynamic aspects of cell behaviour, including morphogenesis, migration, phagocytosis and cytokinesis, and the dysregulation of Rho GTPases is associated with numerous human diseases and disorders.

Related Organizations
Keywords

rho GTP-Binding Proteins, Actin Cytoskeleton, Cell Movement, Neoplasms, Mutation, Animals, Humans, Cell Shape, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    451
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
451
Top 1%
Top 1%
Top 0.1%